blxa {adana} | R Documentation |
Blended Crossover (BLX-\alpha
)
Description
Eshelman and Schaffer (1993) proposed an algorithm called Blended-\alpha
Crossover (BLX-\alpha
) by introducing the concept of interval scheme to be applied in real-valued problems (Takahashi & Kita, 2001).
Usage
blxa(x1, x2, cxon, ...)
Arguments
x1 |
A vector. It contains the chromosomal information of parent-1. |
x2 |
A vector. It contains the chromosomal information of parent-2. |
cxon |
Number of offspring to be generated as a result of crossover |
... |
Further arguments passed to or from other methods. |
Value
A matrix containing the generated offsprings.
Author(s)
Zeynel Cebeci & Erkut Tekeli
References
Eshelman, L.J. and Schaffer, J.D. (1993). Real-coded genetic algorithms and interval schemata. In Foundations of Genetic Algorithms, Vol. 2, pp. 187-202, Elsevier.
Takahashi, M. and Kita, H. (2001). A crossover operator using independent component analysis for real-coded genetic algorithms. In Proc. of the 2001 Cong. on Evolutionary Computation (IEEE Cat.No. 01TH8546), Vol. 1, pp. 643-649. IEEE.
See Also
cross
,
px1
,
kpx
,
sc
,
rsc
,
hux
,
ux
,
ux2
,
mx
,
rrc
,
disc
,
atc
,
cpc
,
eclc
,
raoc
,
dc
,
ax
,
hc
,
sax
,
wax
,
lax
,
bx
,
ebx
,
blxab
,
lapx
,
elx
,
geomx
,
spherex
,
pmx
,
mpmx
,
upmx
,
ox
,
ox2
,
mpx
,
erx
,
pbx
,
pbx2
,
cx
,
icx
,
smc
Examples
ebeveyn1 = c(1.1, 1.6, 0.0, 1.1, 1.4, 1.2)
ebeveyn2 = c(1.2, 0.0, 0.0, 1.5, 1.2, 1.4)
blxa(ebeveyn1, ebeveyn2, cxon=3)