| blxa {adana} | R Documentation |
Blended Crossover (BLX-\alpha)
Description
Eshelman and Schaffer (1993) proposed an algorithm called Blended-\alpha Crossover (BLX-\alpha) by introducing the concept of interval scheme to be applied in real-valued problems (Takahashi & Kita, 2001).
Usage
blxa(x1, x2, cxon, ...)
Arguments
x1 |
A vector. It contains the chromosomal information of parent-1. |
x2 |
A vector. It contains the chromosomal information of parent-2. |
cxon |
Number of offspring to be generated as a result of crossover |
... |
Further arguments passed to or from other methods. |
Value
A matrix containing the generated offsprings.
Author(s)
Zeynel Cebeci & Erkut Tekeli
References
Eshelman, L.J. and Schaffer, J.D. (1993). Real-coded genetic algorithms and interval schemata. In Foundations of Genetic Algorithms, Vol. 2, pp. 187-202, Elsevier.
Takahashi, M. and Kita, H. (2001). A crossover operator using independent component analysis for real-coded genetic algorithms. In Proc. of the 2001 Cong. on Evolutionary Computation (IEEE Cat.No. 01TH8546), Vol. 1, pp. 643-649. IEEE.
See Also
cross,
px1,
kpx,
sc,
rsc,
hux,
ux,
ux2,
mx,
rrc,
disc,
atc,
cpc,
eclc,
raoc,
dc,
ax,
hc,
sax,
wax,
lax,
bx,
ebx,
blxab,
lapx,
elx,
geomx,
spherex,
pmx,
mpmx,
upmx,
ox,
ox2,
mpx,
erx,
pbx,
pbx2,
cx,
icx,
smc
Examples
ebeveyn1 = c(1.1, 1.6, 0.0, 1.1, 1.4, 1.2)
ebeveyn2 = c(1.2, 0.0, 0.0, 1.5, 1.2, 1.4)
blxa(ebeveyn1, ebeveyn2, cxon=3)