MarginOrderedPruning.Bagging {adabag} | R Documentation |
MarginOrderedPruning.Bagging
Description
Margin-based ordered aggregation for bagging pruning
Usage
MarginOrderedPruning.Bagging(baggingObject, trainingset, pruningset,
marginType = "unsupervised", doTrace = TRUE)
Arguments
baggingObject |
fitted model object of class |
trainingset |
the training set of the |
pruningset |
a set aside dataset for |
marginType |
if "unsupervised" (by default) the margin is the difference between the proportions of votes of the first and second most popular classes. Else the margin is calculated as the difference between the proportion of votes of the correct class and the most popular among the other classes |
doTrace |
If set to |
Value
Returns a list with the following components:
prunedBagging |
a pruned |
AccuracyOrderedEnsemblePruningSet |
Accuracy of each ordered ensemble on pruning set |
Note
Questions about this function should be sent to Li Guo
Author(s)
Li Guo guoli84@hotmail.com
References
Guo, L. and Boukir, S. (2013): "Margin-based ordered aggregation for ensemble pruning". Pattern Recognition Letters, 34(6), 603-609.
See Also
Examples
## mlbench package should be loaded
library(mlbench)
data(Satellite)
## Separate data into 3 parts: training set, pruning set and test set
ind <- sample(3, nrow(Satellite), replace = TRUE, prob=c(0.3, 0.2,0.5))
## create bagging with training set
#increase mfinal in your own execution of this example to see
#the real usefulness of this function
Satellite.bagging<-bagging(classes~.,data=Satellite[ind==1,],mfinal=3)
#Satellite.bagging.pred<-predict(Satellite.bagging,Satellite[ind==3,])
##pruning bagging
Satellite.bagging.pruning<-MarginOrderedPruning.Bagging(Satellite.bagging,
Satellite[ind==1,],Satellite[ind==2,])
#Satellite.bagging.pruning.pred<-predict(Satellite.bagging.pruning$prunedBagging,
#Satellite[ind==3,])
## create bagging with training and pruning set
#This example has been hidden to fulfill execution time <5s
#Satellite.bagging2<-bagging(classes~.,data=Satellite[ind!=3,],25)
#Satellite.bagging2.pred<-predict(Satellite.bagging2,Satellite[ind==3,])