Applies Multiclass AdaBoost.M1, SAMME and Bagging


[Up] [Top]

Documentation for package ‘adabag’ version 5.0

Help Pages

adabag-package Applies Multiclass AdaBoost.M1, SAMME and Bagging
adabag Applies Multiclass AdaBoost.M1, SAMME and Bagging
adaboost.M1 Applies the AdaBoost.M1 and SAMME algorithms to a data set
autoprune Builds automatically a pruned tree of class 'rpart'
bagging Applies the Bagging algorithm to a data set
bagging.cv Runs v-fold cross validation with Bagging
boosting Applies the AdaBoost.M1 and SAMME algorithms to a data set
boosting.cv Runs v-fold cross validation with AdaBoost.M1 or SAMME
Ensemble_ranking_IW Ensemble methods for ranking data: Item-Weighted Boosting and Bagging Algorithms
errorevol Shows the error evolution of the ensemble
errorevol_ranking_vector_IW Calculate the error evolution and final predictions of an item-weighted ensemble for rankings
importanceplot Plots the variables relative importance
MarginOrderedPruning.Bagging MarginOrderedPruning.Bagging
margins Calculates the margins
plot.errorevol Plots the error evolution of the ensemble
plot.margins Plots the margins of the ensemble
predict.bagging Predicts from a fitted bagging object
predict.boosting Predicts from a fitted boosting object
prep_data Prepare Ranking Data for Item-Weighted Ensemble Algorithm
simulatedRankingData Simulated ranking data