adabag-package | Applies Multiclass AdaBoost.M1, SAMME and Bagging |
adabag | Applies Multiclass AdaBoost.M1, SAMME and Bagging |
adaboost.M1 | Applies the AdaBoost.M1 and SAMME algorithms to a data set |
autoprune | Builds automatically a pruned tree of class 'rpart' |
bagging | Applies the Bagging algorithm to a data set |
bagging.cv | Runs v-fold cross validation with Bagging |
boosting | Applies the AdaBoost.M1 and SAMME algorithms to a data set |
boosting.cv | Runs v-fold cross validation with AdaBoost.M1 or SAMME |
Ensemble_ranking_IW | Ensemble methods for ranking data: Item-Weighted Boosting and Bagging Algorithms |
errorevol | Shows the error evolution of the ensemble |
errorevol_ranking_vector_IW | Calculate the error evolution and final predictions of an item-weighted ensemble for rankings |
importanceplot | Plots the variables relative importance |
MarginOrderedPruning.Bagging | MarginOrderedPruning.Bagging |
margins | Calculates the margins |
plot.errorevol | Plots the error evolution of the ensemble |
plot.margins | Plots the margins of the ensemble |
predict.bagging | Predicts from a fitted bagging object |
predict.boosting | Predicts from a fitted boosting object |
prep_data | Prepare Ranking Data for Item-Weighted Ensemble Algorithm |
simulatedRankingData | Simulated ranking data |