plotDetections {actel} | R Documentation |
Plot detections for a single tag
Description
The output of plotDetections is a ggplot object, which means you can then use it in combination with other ggplot functions, or even together with other packages such as patchwork.
Usage
plotDetections(
input,
tag,
type,
y.axis = c("auto", "stations", "arrays"),
title,
xlab,
ylab,
col,
array.alias,
section.alias,
frame.warning = TRUE,
x.label.format,
only.valid = FALSE,
like.migration = TRUE
)
Arguments
input |
The results of an actel analysis (either explore, migration or residency). |
tag |
The transmitter to be plotted. |
type |
DEPRECATED. Please use the argument y.axis instead. |
y.axis |
The type of y axis desired. One of "stations" (default) or "arrays". |
title |
An optional title for the plot. If left empty, a default title will be added. |
xlab , ylab |
Optional axis names for the plot. If left empty, default axis names will be added. |
col |
An optional colour scheme for the detections. If left empty, default colours will be added. |
array.alias |
A named vector of format c("old_array_name" = "new_array_name") to replace default array names with user defined ones. |
section.alias |
A named vector of format c("old_section_name" = "new_section_name") to replace default section names with user defined ones. |
frame.warning |
Logical. By default, actel highlights manually changed or overridden tags in yellow and red plot frames, respectively. Set to FALSE to deactivate this behaviour. |
x.label.format |
A character string giving a date-time format for the x labels. If missing, ggplot's default labels are used. |
only.valid |
Logical. Should only valid detections be printed? |
like.migration |
Logical. For plots originating from migration analyses, should the additional grey vertical bars be included? Defaults to TRUE, and only has a visible effect if the input stems from a migration analysis. |
Value
A ggplot object.
Examples
# Using the example results that come with actel
plotDetections(example.results, 'R64K-4451')
# Because plotDetections returns a ggplot object, you can store
# it and edit it manually, e.g.:
library(ggplot2)
p <- plotDetections(example.results, 'R64K-4451')
p <- p + xlab("changed the x axis label a posteriori")
p
# You can also save the plot using ggsave!