simulateAbn {abn} | R Documentation |
Simulate data from a fitted additive Bayesian network.
Description
Simulate data from a fitted additive Bayesian network.
Usage
simulateAbn(
object = NULL,
run.simulation = TRUE,
bugsfile = NULL,
n.chains = 10L,
n.adapt = 1000L,
n.thin = 100L,
n.iter = 10000L,
seed = 42L,
verbose = FALSE,
debug = FALSE
)
Arguments
object |
of type |
run.simulation |
call JAGS to simulate data (default is |
bugsfile |
A path to a valid file or |
n.chains |
number of parallel chains for the model. |
n.adapt |
number of iteration for adaptation. If |
n.thin |
thinning interval for monitors. |
n.iter |
number of iteration to monitor. |
seed |
by default set to 42. |
verbose |
if TRUE prints additional output |
debug |
if TRUE prints bug file content to stdout and does not run simulations. |
Value
data.frame
See Also
Examples
df <- FCV[, c(12:15)]
mydists <- list(Outdoor="binomial",
Sex="multinomial",
GroupSize="poisson",
Age="gaussian")
## buildScoreCache -> mostProbable() -> fitAbn()
suppressWarnings({
mycache.mle <- buildScoreCache(data.df = df, data.dists = mydists, method = "mle",
adj.vars = NULL, cor.vars = NULL,
dag.banned = NULL, dag.retained = NULL,
max.parents = 1,
which.nodes = NULL, defn.res = NULL)
}) # ignore non-convergence warnings
mp.dag.mle <- mostProbable(score.cache = mycache.mle, verbose = FALSE)
myres.mle <- fitAbn(object = mp.dag.mle, method = "mle")
myres.sim <- simulateAbn(object = myres.mle,
run.simulation = TRUE,
bugsfile = NULL,
verbose = FALSE)
str(myres.sim)
prop.table(table(myres.sim$Outdoor))
prop.table(table(df$Outdoor))
[Package abn version 3.1.1 Index]