err.regAbcrf {abcrf} | R Documentation |
Calculate and plot for different numbers of tree, the out-of-bag mean squared errors associated with a REG-ABC-RF object
Description
err.regAbcrf
returns out-of-bag mean squared errors and plot them.
Usage
err.regAbcrf(object, training, paral=FALSE,
ncores= if(paral) max(detectCores()-1,1) else 1, what="mean")
Arguments
object |
a |
training |
the data frame containing the reference table used to train the |
paral |
a boolean that indicates if random forests predictions should be parallelized. |
ncores |
the number of CPU cores to use for the random forest predictions. If paral=TRUE, it is used the number of CPU cores minus 1. If ncores is not specified and |
what |
a string caracter "mean" or "median" indicating if the predictions are computed with mean or median of the response variable. |
Value
A matrix with 2 columns: the number of trees and the out-of-bag mean squared errors. NAs might be returned if the number of trees is too low. Errors are computed from 40 trees to the total number.
References
Raynal L., Marin J.-M. Pudlo P., Ribatet M., Robert C. P. and Estoup, A. (2019) ABC random forests for Bayesian parameter inference Bioinformatics doi:10.1093/bioinformatics/bty867
See Also
regAbcrf
,
predict.regAbcrf
,
plot.regAbcrf
,
densityPlot
,
covRegAbcrf
,
ranger
Examples
data(snp)
modindex <- snp$modindex
sumsta <- snp$sumsta[modindex == "3",]
r <- snp$param$r[modindex == "3"]
r <- r[1:500]
sumsta <- sumsta[1:500,]
data2 <- data.frame(r, sumsta)
model.rf.r <- regAbcrf(r~., data2, ntree=100)
err.regAbcrf(model.rf.r, data2)