abcrf |
Create an ABC-RF object: a classification random forest from a reference table towards performing an ABC model choice |
abcrf.formula |
Create an ABC-RF object: a classification random forest from a reference table towards performing an ABC model choice |
covRegAbcrf |
Predict posterior covariance between two parameters for new data using two reg-ABC-RF objects |
covRegAbcrf.regAbcrf |
Predict posterior covariance between two parameters for new data using two reg-ABC-RF objects |
densityPlot |
Plot the posterior density given a new summary statistic |
densityPlot.regAbcrf |
Plot the posterior density given a new summary statistic |
err.abcrf |
Calculate and plot for different numbers of tree, the out-of-bag errors associated with an ABC-RF object |
err.regAbcrf |
Calculate and plot for different numbers of tree, the out-of-bag mean squared errors associated with a REG-ABC-RF object |
plot.abcrf |
Plot of an ABC-RF object |
plot.regAbcrf |
Plot of a reg-ABC-RF object |
predict.abcrf |
Predict and evaluate the posterior probability of the MAP for new data using an ABC-RF object |
predict.regAbcrf |
Predict posterior expectation, median, variance and quantiles given a new dataset using a reg-ABC-RF object |
predictOOB |
Predict out-of-bag posterior expectation, median, variance, quantiles and error measures using a reg-ABC-RF object |
predictOOB.regAbcrf |
Predict out-of-bag posterior expectation, median, variance, quantiles and error measures using a reg-ABC-RF object |
readRefTable |
Read a reference table simulated from DIYABC |
regAbcrf |
Create a reg-ABC-RF object: a regression random forest from a reference table aimed out predicting posterior expectation, variance and quantiles for a parameter |
regAbcrf.formula |
Create a reg-ABC-RF object: a regression random forest from a reference table aimed out predicting posterior expectation, variance and quantiles for a parameter |
snp |
A simulated example in population genetics |
snp.obs |
A simulated example in population genetics |
variableImpPlot |
Variable importance plot from a random forest |