summary.cv4abc {abc} | R Documentation |
Calculates the cross-validation prediction error
Description
This function calculates the prediction error from an object of class
"cv4abc"
for each parameter and tolerance level.
Usage
## S3 method for class 'cv4abc'
summary(object, print = TRUE, digits = max(3,
getOption("digits")-3), ...)
Arguments
object |
an object of class |
print |
logical, if |
digits |
the digits to be rounded to. Can be a vector of the same length as the number of parameters, when each parameter is rounded to its corresponding digits. |
... |
other arguments passed to |
Details
The prediction error is calculated as
\frac{\sum((\theta^{*}-\theta)^2)}{nval\times Var(\theta)}
, where
\theta
is the true parameter value, \theta^{*}
is the
predicted parameter value, and nval
is the number of points where true and predicted values are compared.
Value
The returned value is an object of class "table"
, where the
columns correspond to the parameters and the rows to the different
tolerance levels.
See Also
Examples
## see ?cv4abc for examples