vertex_analysis {VertexWiseR} | R Documentation |
Vertex-wise analysis
Description
Fits a linear or linear mixed model with the cortical or hippocampal surface data as the predicted outcome, and returns cluster-thresholded (Random field theory) t-stat map selected contrast.
Usage
vertex_analysis(
model,
contrast,
random,
surf_data,
p = 0.05,
atlas = 1,
smooth_FWHM,
VWR_check = TRUE
)
Arguments
model |
An N X V data.frame object containing N rows for each subject and V columns for each predictor included in the model. This data.frame should not include the random effects variable. |
contrast |
A numeric vector or object containing the values of the predictor of interest. The cluster-thresholded t-stat maps will be estimated only for this predictor |
random |
An object containing the values of the random variable (optional) |
surf_data |
A matrix object containing the surface data, see SURFvextract() or HIPvextract() output format. |
p |
A numeric object specifying the p-value to threshold the results (Default is 0.05) |
atlas |
A numeric integer object corresponding to the atlas of interest. 1=Desikan, 2=Schaefer-100, 3=Schaefer-200, 4=Glasser-360, 5=Destrieux-148. |
smooth_FWHM |
A numeric vector object specifying the desired smoothing width in mm |
VWR_check |
A boolean object specifying whether to check and validate system requirements. Default is TRUE. |
Details
The function imports and adapts the 'BraiStat' Python library.
Output definitions:
-
nverts
: number of vertices in the cluster -
P
: p-value of the cluster -
X, Y and Z
: MNI coordinates of the vertex with the highest t-statistic in the cluster. -
tstat
: t statistic of the vertex with the highest t-statistic in the cluster -
region
: the region this highest -statistic vertex is located in, as determined/labelled by the selected atlas
Value
A list object containing the cluster level results, thresholded t-stat map, and positive, negative and bidirectional cluster maps.
Examples
demodata = readRDS(system.file('demo_data/SPRENG_behdata_site1.rds',
package = 'VertexWiseR'))[1:100,]
CTv = readRDS(file = url(paste0("https://github.com",
"/CogBrainHealthLab/VertexWiseR/blob/main/inst/demo_data/",
"SPRENG_CTv_site1.rds?raw=TRUE")))[1:100,]
vertexwise_model=vertex_analysis(model=demodata[,c(2,7)],
contrast=demodata[,7], surf_data = CTv, atlas=1,p = 0.05,
VWR_check=FALSE)
#Description of the output:
#vertexwise_model$cluster_level_results