matchImpute {VIM} | R Documentation |
Fast matching/imputation based on categorical variable
Description
Suitable donors are searched based on matching of the categorical variables. The variables are dropped in reversed order, so that the last element of 'match_var' is dropped first and the first element of the vector is dropped last.
Usage
matchImpute(
data,
variable = colnames(data)[!colnames(data) %in% match_var],
match_var,
imp_var = TRUE,
imp_suffix = "imp"
)
Arguments
data |
data.frame, data.table or matrix |
variable |
variables to be imputed |
match_var |
variables used for matching |
imp_var |
TRUE/FALSE if a TRUE/FALSE variables for each imputed variable should be created show the imputation status |
imp_suffix |
suffix for the TRUE/FALSE variables showing the imputation status |
Details
The method works by sampling values from the suitable donors.
Value
the imputed data set.
Author(s)
Johannes Gussenbauer, Alexander Kowarik
See Also
Other imputation methods:
hotdeck()
,
impPCA()
,
irmi()
,
kNN()
,
medianSamp()
,
rangerImpute()
,
regressionImp()
,
sampleCat()
Examples
data(sleep,package="VIM")
imp_data <- matchImpute(sleep,variable=c("NonD","Dream","Sleep","Span","Gest"),
match_var=c("Exp","Danger"))
data(testdata,package="VIM")
imp_testdata1 <- matchImpute(testdata$wna,match_var=c("c1","c2","b1","b2"))
dt <- data.table::data.table(testdata$wna)
imp_testdata2 <- matchImpute(dt,match_var=c("c1","c2","b1","b2"))
[Package VIM version 6.2.2 Index]