evaluation {VIM} | R Documentation |
Error performance measures
Description
Various error measures evaluating the quality of imputations
Usage
evaluation(x, y, m, vartypes = "guess")
nrmse(x, y, m)
pfc(x, y, m)
msecov(x, y)
msecor(x, y)
Arguments
x |
matrix or data frame |
y |
matrix or data frame of the same size as x |
m |
the indicator matrix for missing cells |
vartypes |
a vector of length ncol(x) specifying the variables types, like factor or numeric |
Details
This function has been mainly written for procudures that evaluate imputation or replacement of rounded zeros. The ni parameter can thus, e.g. be used for expressing the number of rounded zeros.
Value
the error measures value
Author(s)
Matthias Templ
References
M. Templ, A. Kowarik, P. Filzmoser (2011) Iterative stepwise regression imputation using standard and robust methods. Journal of Computational Statistics and Data Analysis, Vol. 55, pp. 2793-2806.
Examples
data(iris)
iris_orig <- iris_imp <- iris
iris_imp$Sepal.Length[sample(1:nrow(iris), 10)] <- NA
iris_imp$Sepal.Width[sample(1:nrow(iris), 10)] <- NA
iris_imp$Species[sample(1:nrow(iris), 10)] <- NA
m <- is.na(iris_imp)
iris_imp <- kNN(iris_imp, imp_var = FALSE)
evaluation(iris_orig, iris_imp, m = m, vartypes = c(rep("numeric", 4), "factor"))
msecov(iris_orig[, 1:4], iris_imp[, 1:4])
[Package VIM version 6.2.2 Index]