predefinedClassifiers {TunePareto} | R Documentation |
TunePareto wrappers for certain classifiers
Description
Creates TunePareto classifier objects for the k-Nearest Neighbour classifier, support vector machines, and trees.
Usage
tunePareto.knn()
tunePareto.svm()
tunePareto.tree()
tunePareto.randomForest()
tunePareto.NaiveBayes()
Details
tunePareto.knn
encapsulates a k-Nearest Neighbour classifier as defined in link[class]{knn}
in package class. The classifier allows for supplying and tuning the following parameters of link[class]{knn}
:
k, l, use.all
tunePareto.svm
encapsulates the support vector machine svm
classifier in package e1071. The classifier allows for supplying and tuning the following parameters:
kernel, degree, gamma,
coef0, cost, nu,
class.weights, cachesize,
tolerance, epsilon,
scale, shrinking, fitted,
subset, na.action
tunePareto.tree
encapsulates the CART classifier tree
in package tree. The classifier allows for supplying and tuning the following parameters:
weights, subset,
na.action, method,
split, mincut, minsize, mindev
as well as the type
parameter of predict.tree
.
tunePareto.randomForest
encapsulates the randomForest
classifier in package randomForest. The classifier allows for supplying and tuning the following parameters:
subset, na.action,
ntree, mtry,
replace, classwt,
cutoff, strata,
sampsize, nodesize,
maxnodes
tunePareto.NaiveBayes
encapsulates the NaiveBayes
classifier in package klaR. The classifier allows for supplying and tuning the following parameters:
prior, usekernel, fL, subset,
na.action, bw, adjust, kernel, weights,
window, width, give.Rkern, n,
from, to, cut, na.rm
Value
Returns objects of class TuneParetoClassifier
as described in tuneParetoClassifier
. These can be passed to functions like tunePareto
or trainTuneParetoClassifier
.
See Also
tuneParetoClassifier
, tunePareto
, trainTuneParetoClassifier
Examples
# tune a k-NN classifier with different 'k' and 'l'
# on the 'iris' data set
print(tunePareto(classifier = tunePareto.knn(),
data = iris[, -ncol(iris)],
labels = iris[, ncol(iris)],
k = c(5,7,9),
l = c(1,2,3),
objectiveFunctions=list(cvError(10, 10),
cvSpecificity(10, 10, caseClass="setosa"))))
# tune an SVM with different costs on
# the 'iris' data set
# using Halton sequences for sampling
print(tunePareto(classifier = tunePareto.svm(),
data = iris[, -ncol(iris)],
labels = iris[, ncol(iris)],
cost = as.interval(0.001,10),
sampleType = "halton",
numCombinations=20,
objectiveFunctions=list(cvWeightedError(10, 10),
cvSensitivity(10, 10, caseClass="setosa"))))
# tune a CART classifier with different
# splitting criteria on the 'iris' data set
print(tunePareto(classifier = tunePareto.tree(),
data = iris[, -ncol(iris)],
labels = iris[, ncol(iris)],
split = c("deviance","gini"),
objectiveFunctions=list(cvError(10, 10),
cvErrorVariance(10, 10))))
# tune a Random Forest with different numbers of trees
# on the 'iris' data set
print(tunePareto(classifier = tunePareto.randomForest(),
data = iris[, -ncol(iris)],
labels = iris[, ncol(iris)],
ntree = seq(50,300,50),
objectiveFunctions=list(cvError(10, 10),
cvSpecificity(10, 10, caseClass="setosa"))))
# tune a Naive Bayes classifier with different kernels
# on the 'iris' data set
print(tunePareto(classifier = tunePareto.NaiveBayes(),
data = iris[, -ncol(iris)],
labels = iris[, ncol(iris)],
kernel = c("gaussian", "epanechnikov", "rectangular",
"triangular", "biweight",
"cosine", "optcosine"),
objectiveFunctions=list(cvError(10, 10),
cvSpecificity(10, 10, caseClass="setosa"))))