pcasup3 {ThreeWay} | R Documentation |
PCASup Analysis
Description
Computes PCASup analysis in all the three directions.
Usage
pcasup3(X, n, m, p)
Arguments
X |
Matrix (or data.frame coerced to a matrix) of order ( |
n |
Number of |
m |
Number of |
p |
Number of |
Value
A list including the following components:
A |
Matrix of the eingenvectors of the supermatrix containing the frontal slices of the array ( |
B |
Matrix of the eingenvectors of the supermatrix containing the horizontal slices of the array ( |
C |
Matrix of the eingenvectors of the supermatrix containing the lateral slices of the array ( |
la |
Vector of the eigenvalues of the supermatrix containing the frontal slices of the array ( |
lb |
Vector of the eigenvalues of the supermatrix containing the horizontal slices of the array ( |
lc |
Vector of the eigenvalues of the supermatrix containing the lateral slices of the array ( |
Note
pcasup3
computes the Tucker3 solution according to Tucker (1966).
Cumulative sum of eigenvalues and fits from PCAsup applied to the A
-, B
- and C
-modes are automatically printed.
Author(s)
Maria Antonietta Del Ferraro mariaantonietta.delferraro@yahoo.it
Henk A.L. Kiers h.a.l.kiers@rug.nl
Paolo Giordani paolo.giordani@uniroma1.it
References
H.A.L. Kiers (1991). Hierarchical relations among three-way methods. Psychometrika 56: 449–470.
H.A.L. Kiers (2000). Towards a standardized notation and terminology in multiway analysis. Journal of Chemometrics 14:105–122.
L.R Tucker (1966). Some mathematical notes on three-mode factor analysis. Psychometrika 31: 279–311.
See Also
Examples
data(Bus)
## Not run:
# PCA-sup
pcasupBus <- pcasup3(Bus, 7, 5, 37)
## End(Not run)