h_item {TestDesign} | R Documentation |
(C++) Calculate second derivative of log-likelihood
Description
h_*()
and array_h_*()
are C++ functions for calculating the second derivative of the log-likelihood function.
Usage
h_1pl(x, b, u)
h_2pl(x, a, b, u)
h_m_2pl(x, a, d, u)
h_3pl(x, a, b, c, u)
h_m_3pl(x, a, d, c, u)
h_pc(x, b, u)
h_gpc(x, a, b, u)
h_m_gpc(x, a, d, u)
h_gr(x, a, b, u)
h_m_gr(x, a, d, u)
array_h_1pl(x, b, u)
array_h_2pl(x, a, b, u)
array_h_3pl(x, a, b, c, u)
array_h_pc(x, b, u)
array_h_gpc(x, a, b, u)
array_h_gr(x, a, b, u)
Arguments
x |
the theta value. The number of columns should correspond to the number of dimensions.
For |
b , d |
the difficulty parameter. |
u |
the response value. |
a |
the a-parameter. |
c |
the c-parameter. |
Details
h_*()
functions accept a single theta value, and array_h_*()
functions accept multiple theta values.
Supports unidimensional and multidimensional models.
h_1pl()
,array_h_1pl()
: 1PL modelsh_2pl()
,array_h_2pl()
: 2PL modelsh_3pl()
,array_h_3pl()
: 3PL modelsh_pc()
,array_h_pc()
: PC (partial credit) modelsh_gpc()
,array_h_gpc()
: GPC (generalized partial credit) modelsh_gr()
,array_h_gr()
: GR (graded response) modelsh_m_2pl()
,array_h_m_2pl()
: multidimensional 2PL modelsh_m_3pl()
,array_h_m_3pl()
: multidimensional 3PL modelsh_m_gpc()
,array_h_m_gpc()
: multidimensional GPC modelsh_m_gr()
,array_h_m_gr()
: multidimensional GR models
References
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research.
Lord, F. M. (1952). A theory of test scores (Psychometric Monograph No. 7). Richmond, VA: Psychometric Corporation.
Birnbaum, A. (1957). Efficient design and use of tests of mental ability for various decision-making problems (Series Report No. 58-16. Project No. 7755-23). Randolph Air Force Base, TX: USAF School of Aviation Medicine.
Birnbaum, A. (1958). On the estimation of mental ability (Series Report No. 15. Project No. 7755-23). Randolph Air Force Base, TX: USAF School of Aviation Medicine.
Birnbaum, A. (1958). Further considerations of efficiency in tests of a mental ability (Series Report No. 17. Project No. 7755-23). Randolph Air Force Base, TX: USAF School of Aviation Medicine.
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In Lord, F. M., Novick, M. R. (eds.), Statistical Theories of Mental Test Scores, 397-479. Reading, MA: Addison-Wesley.
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149-174.
Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43(4), 561-573.
Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16(2), 159-176.
Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph, 17.
Examples
u <- 1
x <- 0.5
h_1pl(x, 1, u)
h_2pl(x, 1, 2, u)
h_3pl(x, 1, 2, 0.25, u)
h_pc(x, c(0, 1), u)
h_gpc(x, 2, c(0, 1), u)
h_gr(x, 2, c(0, 2), u)
x <- matrix(seq(-3, 3, 1)) # three theta values, unidimensional
array_h_1pl(x, 1, u)
array_h_2pl(x, 1, 2, u)
array_h_3pl(x, 1, 2, 0.25, u)
array_h_pc(x, c(0, 1), u)
array_h_gpc(x, 2, c(0, 1), u)
array_h_gr(x, 2, c(0, 2), u)