| SeSDA {TULIP} | R Documentation | 
Solution path for semiparametric sparse discriminant analysis
Description
Compute the solution path for semiparametric sparse discriminant analysis.
Usage
SeSDA(x,y,standardize=FALSE,lambda=NULL,alpha=1,eps=1e-7)
Arguments
| x | Input matrix of predictors.  | 
| y | An n-dimensional vector containing the class labels. The classes have to be labeled as 1 and 2. | 
| standardize | A logic object indicating whether x should be standardized after transformation but before fitting classifier. Default is FALSE. | 
| lambda | A sequence of lambda's. If lambda is missed or NULL, the function will automatically generates a sequence of lambda's to fit model. | 
| alpha | The elasticnet mixing parameter, the same as in glmnet. Default is alpha=1 so that the lasso penalty is used. | 
| eps | Convergence threshold for coordinate descent, the same as in glmnet. Default is 1e-7. | 
Value
| transform | The tranformation functions. | 
| objdsda | A DSDA object fitted on transformed data. | 
Author(s)
Yuqing Pan, Qing Mai, Xin Zhang
References
Mai, Q., Zou, H. and Yuan, M. (2013). A direct approach to sparse discriminant analysis in ultra-high dimensions. Biometrika, 99, 29-42.
Examples
  data(GDS1615)   ##load the prostate data
  x<-GDS1615$x
  y<-GDS1615$y
  x=x[which(y<3),]
  y=y[which(y<3)]
  obj.path <- SeSDA(x,y)