adjten |
Adjust tensor for covariates. |
adjvec |
Adjust vector for covariates. |
catch |
Fit a CATCH model and predict categorical response. |
catch_matrix |
Fit a CATCH model for matrix and predict categorical response. |
csa |
Colorimetric sensor array (CSA) data |
cv.catch |
Cross-validation for CATCH |
cv.dsda |
Cross validation for direct sparse discriminant analysis |
cv.msda |
Cross-validation for DSDA/MSDA through function 'msda' |
cv.SeSDA |
Cross validation for semiparametric sparse discriminant analysis |
dsda |
Solution path for direct sparse discriminant analysis |
dsda.all |
Direct sparse discriminant analysis |
GDS1615 |
GDS1615 data introduced in Burczynski et al. (2012). |
getnorm |
Direct sparse discriminant analysis |
msda |
Fits a regularization path of Sparse Discriminant Analysis and predicts |
predict.catch |
Predict categorical responses for matrix/tensor data. |
predict.dsda |
Prediction for direct sparse discriminant analysis |
predict.msda |
Predict categorical responses for vector data. |
predict.SeSDA |
Prediction for semiparametric sparse discriminant analysis |
ROAD |
Solution path for regularized optimal affine discriminant |
SeSDA |
Solution path for semiparametric sparse discriminant analysis |
sim.bi.vector |
Simulate data |
sim.tensor.cov |
Simulate data |
SOS |
Solution path for sparse discriminant analysis |
x |
GDS1615 data introduced in Burczynski et al. (2012). |
y |
GDS1615 data introduced in Burczynski et al. (2012). |