transLS {TPmsm} | R Documentation |
Location-Scale transition probabilities
Description
Provides estimates for the transition probabilities based on the Location-Scale estimator, LS.
Usage
transLS(object, s, t, h, nh=40, ncv=10, window="normal", state.names=c("1", "2", "3"),
conf=FALSE, n.boot=1000, conf.level=0.95, method.boot="percentile", boot.cv=FALSE,
cv.full=TRUE)
Arguments
object |
An object of class ‘survTP’. |
s |
The first time for obtaining estimates for the transition probabilities. If missing, 0 will be used. |
t |
The second time for obtaining estimates for the transition probabilities.
If missing, the maximum of |
h |
A vector with 1 up to 4 values, indicating the minimum and maximum bandwidths to test by cross-validation. |
nh |
The number of bandwidth values to test by cross-validation. Defaults to 40. |
ncv |
The number of cross-validation samples. Defaults to 10. |
window |
A character string specifying the desired kernel. Possible options are “normal”, “epanech”, “biweight”, “triweight”, “box”, “tricube”, “triangular” or “cosine”. Defaults to “normal” where the gaussian density kernel will be used. |
state.names |
A vector of characters giving the state names. |
conf |
Provides pointwise confidence bands. Defaults to |
n.boot |
The number of bootstrap samples. Defaults to 1000 samples. |
conf.level |
Level of confidence. Defaults to 0.95 (corresponding to 95%). |
method.boot |
The method used to compute bootstrap confidence bands. Possible options are “percentile” and “basic”. Defaults to “percentile”. |
boot.cv |
If |
cv.full |
If |
Value
An object of class ‘TPmsm’. There are methods for contour
, image
, print
and plot
.
‘TPmsm’ objects are implemented as a list with elements:
method |
A string indicating the type of estimator used in the computation. |
est |
A matrix with transition probability estimates. The rows being the event times and the columns the 5 possible transitions. |
inf |
A matrix with the lower transition probabilities of the confidence band. The rows being the event times and the columns the 5 possible transitions. |
sup |
A matrix with the upper transition probabilities of the confidence band. The rows being the event times and the columns the 5 possible transitions. |
time |
Vector of times where the transition probabilities are computed. |
s |
Start of the time interval. |
t |
End of the time interval. |
h |
The bandwidth used. If the estimator doesn't require a bandwidth, it's set to |
state.names |
A vector of characters giving the states names. |
n.boot |
Number of bootstrap samples used in the computation of the confidence band. |
conf.level |
Level of confidence used to compute the confidence band. |
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Meira-Machado L., Roca-Pardiñas J., Van Keilegom I., Cadarso-Suárez C. (2013). Bandwidth Selection for the Estimation of Transition Probabilities in the Location-Scale Progressive Three-State Model. Computational Statistics, 28(5), 2185-2210. doi:10.1007/s00180-013-0402-0
Meira-Machado L., Roca-Pardiñas J., Van Keilegom I., Cadarso-Suárez C. (2010). Estimation of transition probabilities in a non-Markov model with successive survival times. https://sites.uclouvain.be/IAP-Stat-Phase-V-VI/ISBApub/dp2010/DP1053.pdf
Van Keilegom I., de Uña-Álvarez J., Meira-Machado L. (2011). Nonparametric location-scale models for successive survival times under dependent censoring. Journal of Statistical Planning and Inference, 141(3), 1118-1131. doi:10.1016/j.jspi.2010.09.010
Davison, A. C., Hinkley, D. V. (1997). Bootstrap Methods and their Application, Chapter 5, Cambridge University Press.
See Also
transAJ
,
transIPCW
,
transKMPW
,
transKMW
,
transLIN
,
transPAJ
.
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Create survTP object
data(bladderTP);
bladderTP_obj <- with( bladderTP, survTP(time1, event1, Stime, event) );
# Compute transition probabilities
LS0 <- transLS(object=bladderTP_obj, s=5, t=59, h=c(0.25, 2.5), nh=25, ncv=50, conf=FALSE);
print(LS0);
# Compute transition probabilities with confidence band
h <- with( LS0, c( rep(h[1], 2), rep(h[2], 2) ) );
transLS(object=bladderTP_obj, s=5, t=59, h=h, conf=TRUE,
conf.level=0.95, method.boot="percentile", boot.cv=FALSE);
# Restore the number of threads
setThreadsTP(nth);