lines.TPmsm {TPmsm} | R Documentation |
lines method for a TPmsm object
Description
lines method for an object of class ‘TPmsm’.
Usage
## S3 method for class 'TPmsm'
lines(x, tr.choice, col, lty, conf.int=FALSE, ci.col, ci.lty,
legend=FALSE, legend.pos, curvlab, legend.bty="n", ...)
Arguments
x |
An object of class ‘TPmsm’. |
tr.choice |
Character vector of the form ‘c(“from to”, “from to”)’ specifying which transitions should be plotted. Default, all the transition probabilities are plotted. |
col |
Vector of colour. Default is black. |
lty |
Vector of line type. Default is 1:number of transitions. |
conf.int |
Logical. Whether to display pointwise confidence bands. Default is FALSE. |
ci.col |
Colour of the confidence bands. Default is |
ci.lty |
Line type of the confidence bands. Default is 3. |
legend |
A logical specifying if a legend should be added. |
legend.pos |
A vector giving the legend's position.
See |
curvlab |
A character or expression vector to appear in the legend. Default is the name of the transitions. |
legend.bty |
Box type for the legend. By default no box is drawn. |
... |
Further arguments for lines. |
Value
No value is returned.
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
See Also
legend
,
lines
,
plot.default
,
plot.TPmsm
.
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Create survTP object
data(bladderTP);
bladderTP_obj <- with( bladderTP, survTP(time1, event1, Stime, event) );
# Compute transition probabilities without confidence band
KMW <- transKMW(object=bladderTP_obj, s=5, t=59, conf=FALSE, method.est=1);
KMPW <- transKMPW(object=bladderTP_obj, s=5, t=59, conf=FALSE, method.est=1);
AJ <- transAJ(object=bladderTP_obj, s=5, t=59, conf=FALSE);
PAJ <- transPAJ(object=bladderTP_obj, s=5, t=59, conf=FALSE);
LIN <- transLIN(object=bladderTP_obj, s=5, t=59, conf=FALSE);
LS <- transLS(object=bladderTP_obj, s=5, t=59, h=c(0.25, 2.5),
nh=25, ncv=50, conf=FALSE);
# Plot '1 2' KMW transition probability estimate
par( mfrow=c(1, 1) );
plot(KMW, tr.choice="1 2", ylab="P12(5, Time)", xlab="Time",
col=1, lty=1, legend=FALSE);
# Add other '1 2' transition probability estimates
lines(KMPW, tr.choice="1 2", col=2, lty=1);
lines(AJ, tr.choice="1 2", col=3, lty=1);
lines(PAJ, tr.choice="1 2", col=4, lty=1);
lines(LIN, tr.choice="1 2", col=5, lty=1);
lines(LS, tr.choice="1 2", col=6, lty=1);
# Add legend
legend(x="topleft", legend=c("KMW", "KMPW", "AJ", "PAJ", "LIN", "LS"),
col=1:6, lty=1, bty="n");
# Plot all the transitions
tr.choice <- colnames(KMW$est);
par.orig <- par( c("mfrow", "cex") );
par( mfrow=c(2, 3) );
for ( i in seq_len( length(tr.choice) ) ) {
plot(KMW, tr.choice=tr.choice[i], col=1, lty=1, legend=FALSE,
main=tr.choice[i], xlab="", ylab="");
lines(KMPW, tr.choice=tr.choice[i], col=2, lty=1);
lines(AJ, tr.choice=tr.choice[i], col=3, lty=1);
lines(PAJ, tr.choice=tr.choice[i], col=4, lty=1);
lines(LIN, tr.choice=tr.choice[i], col=5, lty=1);
lines(LS, tr.choice=tr.choice[i], col=6, lty=1);
}
plot.new();
legend(x="center", legend=c("KMW", "KMPW", "AJ", "PAJ", "LIN", "LS"),
col=1:6, lty=1, bty="n", cex=1.5);
par(mfrow=c(1, 1), cex=1.2);
title(xlab="Time", ylab="Transition probability", line=3);
par(par.orig);
# Restore the number of threads
setThreadsTP(nth);