lines.TPCmsm {TPmsm} | R Documentation |
lines method for a TPCmsm object
Description
lines method for an object of class ‘TPCmsm’.
Usage
## S3 method for class 'TPCmsm'
lines(x, plot.type="t", tr.choice, col, lty, conf.int=FALSE,
ci.col, ci.lty, legend=FALSE, legend.pos, curvlab, legend.bty="n", ...)
Arguments
x |
An object of class ‘TPCmsm’. |
plot.type |
A character string specifying the type of plot. If “t” the scatterplot of transition probability versus time is plotted. If “c” the scatterplot of transition probability versus covariate is plotted. |
tr.choice |
Character vector of the form ‘c(“from to”, “from to”)’ specifying which transitions should be plotted. Default, all the transition probabilities are plotted. |
col |
Vector of colour. |
lty |
Vector of line type. Default is 1:number of transitions. |
conf.int |
Logical. Whether to display pointwise confidence bands. Default is FALSE. |
ci.col |
Colour of the confidence bands. Default is |
ci.lty |
Line type of the confidence bands. Default is 3. |
legend |
A logical specifying if a legend should be added. |
legend.pos |
A vector giving the legend's position.
See |
curvlab |
A character or expression vector to appear in the legend. Default is the name of the transitions. |
legend.bty |
Box type for the legend. By default no box is drawn. |
... |
Further arguments for lines. |
Value
No value is returned.
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Meira-Machado L., de Uña-Álvarez J., Datta S. (2011). Conditional Transition Probabilities in a non-Markov Illness-death Model. Discussion Papers in Statistics and Operation Research n 11/03. Department of Statistics and Operations Research, University of Vigo (ISSN: 1888-5756, Deposito Legal VG 1402-2007). https://depc05.webs.uvigo.es/reports/12_05.pdf
See Also
legend
,
lines
,
plot.default
,
plot.TPCmsm
.
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Create survTP object
data(heartTP);
heartTP_obj <- with( heartTP, survTP(time1, event1, Stime, event, age=age) );
# Compute IPCW1 conditional transition probabilities without confidence band
TPC_IPCW1 <- transIPCW(heartTP_obj, s=57, t=310, x=15, conf=FALSE, method.est=1);
# Compute IPCW2 conditional transition probabilities without confidence band
TPC_IPCW2 <- transIPCW(heartTP_obj, s=57, t=310, x=15, conf=FALSE, method.est=2);
# Compute LIN conditional transition probabilities without confidence band
TPC_LIN <- transLIN(heartTP_obj, s=57, t=310, x=15, conf=FALSE);
# Build covariate plots
tr.choice <- dimnames(TPC_LIN$est)[[3]];
par.orig <- par( c("mfrow", "cex") );
par( mfrow=c(2,3) );
for ( i in seq_len( length(tr.choice) ) ) {
plot(TPC_IPCW1, plot.type="c", tr.choice=tr.choice[i], legend=FALSE,
main=tr.choice[i], col=1, lty=1, xlab="", ylab="");
lines(TPC_IPCW2, plot.type="c", tr.choice=tr.choice[i], legend=FALSE, col=2, lty=1);
lines(TPC_LIN, plot.type="c", tr.choice=tr.choice[i], legend=FALSE, col=3, lty=1);
}
plot.new();
legend(x="center", legend=c("IPCW1", "IPCW2", "LIN"), col=1:3, lty=1, bty="n", cex=1.5);
par(mfrow=c(1, 1), cex=1.2);
title(xlab="Age", ylab="Transition probability", line=3);
par(par.orig);
# Restore the number of threads
setThreadsTP(nth);