dgpTP {TPmsm} | R Documentation |
Generates bivariate survival data
Description
Generates bivariate censored gap times from some known copula functions.
Usage
dgpTP(n, corr, dist, dist.par, model.cens, cens.par, state2.prob)
Arguments
n |
Sample size. |
corr |
Correlation parameter. Possible values for the bivariate exponential distribution are between -1 and 1 (0 for independency). Any value between 0 (not included) and 1 (1 for independency) is accepted for the bivariate Weibull distribution. |
dist |
Distribution. Possible bivariate distributions are “exponential” and “weibull”. |
dist.par |
Vector of parameters for the allowed distributions. Two (scale) parameters for the bivariate exponential distribution and four (2 location parameters and 2 scale parameters) for the bivariate Weibull distribution. See details below. |
model.cens |
Model for censorship. Possible values are “uniform” and “exponential”. |
cens.par |
Parameter for the censorship distribution.
For censure model equal to “exponential” the argument |
state2.prob |
The proportion of individuals that enter state 2. |
Details
The bivariate exponential distribution, also known as Farlie-Gumbel-Morgenstern distribution is given by
F(x,y)=F_1(x)F_2(y)[1+\alpha(1-F_1(x))(1-F_2(y))]
for x\ge0
and y\ge0
. Where the marginal distribution functions F_1
and F_2
are exponential with scale parameters \theta_1
and \theta_2
and correlation parameter \alpha
, -1 \le \alpha \le 1
.
The bivariate Weibull distribution with two-parameter marginal distributions. It's survival function is given by
S(x,y)=P(X>x,Y>y)=e^{-[(\frac{x}{\theta_1})^\frac{\beta_1}{\delta}+(\frac{y}{\theta_2})^\frac{\beta_2}{\delta}]^\delta}
Where 0 < \delta \le 1
and each marginal distribution has shape parameter \beta_i
and a scale parameter \theta_i
, i = 1, 2
.
Value
An object of class ‘survTP’.
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Devroye L. (1986). Non-Uniform Random Variate Generation, New York: Springer-Verlag.
Johnson M. E. (1987). Multivariate Statistical Simulation, John Wiley and Sons.
Johnson N., Kotz S. (1972). Distributions in statistics: continuous multivariate distributions, John Wiley and Sons.
Lu J., Bhattacharya G. (1990). Some new constructions of bivariate weibull models. Annals of Institute of Statistical Mathematics, 42(3), 543-559. doi:10.1007/BF00049307
Meira-Machado L., Faria S. (2014). A simulation study comparing modeling approaches in an illness-death multi-state model. Communications in Statistics - Simulation and Computation, 43(5), 929-946. doi:10.1080/03610918.2012.718841
Meira-Machado, L., Sestelo M. (2019). Estimation in the progressive illness-death model: a nonexhaustive review. Biometrical Journal, 61(2), 245–263. doi:10.1002/bimj.201700200
See Also
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Example for the bivariate Exponential distribution
dgpTP(n=100, corr=1, dist="exponential", dist.par=c(1, 1),
model.cens="uniform", cens.par=3, state2.prob=0.5);
# Example for the bivariate Weibull distribution
dgpTP(n=100, corr=1, dist="weibull", dist.par=c(2, 7, 2, 7),
model.cens="exponential", cens.par = 6, state2.prob=0.6);
# Restore the number of threads
setThreadsTP(nth);