tepDICA {TExPosition} | R Documentation |
Discriminant Correspondence Analysis
Description
Discriminant Correspondence Analysis (DICA) via TExPosition.
Usage
tepDICA(DATA, make_data_nominal = FALSE, DESIGN = NULL, make_design_nominal = TRUE,
group.masses = NULL, weights = NULL, symmetric = TRUE, graphs = TRUE, k = 0)
Arguments
DATA |
original data to perform a DICA on. Data can be contingency (like CA) or categorical (like MCA). |
make_data_nominal |
a boolean. If TRUE (default), DATA is recoded as a dummy-coded matrix. If FALSE, DATA is a dummy-coded matrix. |
DESIGN |
a design matrix to indicate if rows belong to groups. Required for DICA. |
make_design_nominal |
a boolean. If TRUE (default), DESIGN is a vector that indicates groups (and will be dummy-coded). If FALSE, DESIGN is a dummy-coded matrix. |
group.masses |
a diagonal matrix or column-vector of masses for the groups. |
weights |
a diagonal matrix or column-vector of weights for the column it |
symmetric |
a boolean. If TRUE (default) symmetric factor scores for rows. |
graphs |
a boolean. If TRUE (default), graphs and plots are provided (via |
k |
number of components to return. |
Details
If you use Hellinger distance, it is best to set symmetric
to FALSE.
Note: DICA is a special case of PLS-CA (tepPLSCA
) wherein DATA1 are data and DATA2 are a group-coded disjunctive matrix.
Value
See epCA
(and also coreCA
) for details on what is returned. In addition to the values returned:
fii |
factor scores computed for supplemental observations |
dii |
squared distances for supplemental observations |
rii |
cosines for supplemental observations |
assign |
|
lx |
latent variables from DATA1 computed for observations |
ly |
latent variables from DATA2 computed for observations |
Author(s)
Derek Beaton, Hervé Abdi
References
Abdi, H., and Williams, L.J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 433-459.
Abdi, H. and Williams, L.J. (2010). Correspondence analysis. In N.J. Salkind, D.M., Dougherty, & B. Frey (Eds.): Encyclopedia of Research Design. Thousand Oaks (CA): Sage. pp. 267-278.
Abdi, H. (2007). Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD). In N.J. Salkind (Ed.): Encyclopedia of Measurement and Statistics.Thousand Oaks (CA): Sage. pp. 907-912.
Abdi, H. (2007). Discriminant correspondence analysis. In N.J. Salkind (Ed.): Encyclopedia of Measurement and Statistics. Thousand Oaks (CA): Sage. pp. 270-275.
Pinkham, A.E., Sasson, N.J., Beaton, D., Abdi, H., Kohler, C.G., Penn, D.L. (in press, 2012). Qualitatively distinct factors contribute to elevated rates of paranoia in autism and schizophrenia. Journal of Abnormal Psychology, 121, -.
Williams, L.J., Abdi, H., French, R., & Orange, J.B. (2010). A tutorial on Multi-Block Discriminant Correspondence Analysis (MUDICA): A new method for analyzing discourse data from clinical populations. Journal of Speech Language and Hearing Research, 53, 1372-1393.
Williams, L.J., Dunlop, J.P., & Abdi, H. (2012). Effect of age on the variability in the production of text-based global inferences. PLoS One, 7(5): e36161. doi:10.1371/ journal.pone.0036161 (pp.1-9)
See Also
coreCA
, epCA
, epMCA
For MatLab code: http://utd.edu/~herve/HerveAbdi_MatlabPrograms4MUDICA.zip
For additional R code (with inference tests): http://utdallas.edu/~dfb090020/attachments/MuDiCA.zip
Examples
data(dica.wine)
dica.res <- tepDICA(dica.wine$data,DESIGN=dica.wine$design,make_design_nominal=FALSE)