epMCA {ExPosition} | R Documentation |
epMCA: Multiple Correspondence Analysis (MCA) via ExPosition.
Description
Multiple Correspondence Analysis (MCA) via ExPosition.
Usage
epMCA(DATA, make_data_nominal = TRUE, DESIGN = NULL, make_design_nominal = TRUE,
masses = NULL, weights = NULL, hellinger = FALSE,
symmetric = TRUE, correction = c("b"), graphs = TRUE, k = 0)
Arguments
DATA |
original data to perform a MCA on. This data can be in original formatting (qualitative levels) or in dummy-coded variables. |
make_data_nominal |
a boolean. If TRUE (default), DATA is recoded as a dummy-coded matrix. If FALSE, DATA is a dummy-coded matrix. |
DESIGN |
a design matrix to indicate if rows belong to groups. |
make_design_nominal |
a boolean. If TRUE (default), DESIGN is a vector that indicates groups (and will be dummy-coded). If FALSE, DESIGN is a dummy-coded matrix. |
masses |
a diagonal matrix or column-vector of masses for the row items. |
weights |
a diagonal matrix or column-vector of weights for the column it |
hellinger |
a boolean. If FALSE (default), Chi-square distance will be used. If TRUE, Hellinger distance will be used. |
symmetric |
a boolean. If TRUE symmetric factor scores for rows. |
correction |
which corrections should be applied? "b" = Benzécri correction, "bg" = Greenacre adjustment to Benzécri correction. |
graphs |
a boolean. If TRUE (default), graphs and plots are provided (via |
k |
number of components to return. |
Details
epMCA
performs multiple correspondence analysis. Essentially, a CA for categorical data.
It should be noted that when hellinger
is selected as TRUE, no correction will be performed. Additionally, if you decide to use Hellinger, it is best to set symmetric
to FALSE.
Value
See coreCA
for details on what is returned. In addition to the values returned:
$pdq |
this is the corrected SVD data, if a correction was selected. If no correction was selected, it is uncorrected. |
$pdq.uncor |
uncorrected SVD data. |
Author(s)
Derek Beaton
References
Abdi, H., and Williams, L.J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 433-459.
Abdi, H., and Williams, L.J. (2010). Correspondence analysis. In N.J. Salkind, D.M., Dougherty, & B. Frey (Eds.): Encyclopedia of Research Design. Thousand Oaks (CA): Sage. pp. 267-278.
Abdi, H. (2007). Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD). In N.J. Salkind (Ed.): Encyclopedia of Measurement and Statistics.Thousand Oaks (CA): Sage. pp. 907-912.
Benzécri, J. P. (1979). Sur le calcul des taux d'inertie dans l'analyse d'un questionnaire. Cahiers de l'Analyse des Données, 4, 377-378.
Greenacre, M. J. (2007). Correspondence Analysis in Practice. Chapman and Hall.
See Also
Examples
data(mca.wine)
mca.wine.res <- epMCA(mca.wine$data)