tepBADA {TExPosition} | R Documentation |
Barycentric Discriminant Analysis
Description
Barycentric Discriminant Analysis (BADA) via TExPosition.
Usage
tepBADA(DATA, scale = TRUE, center = TRUE, DESIGN = NULL, make_design_nominal = TRUE,
group.masses = NULL, weights = NULL, graphs = TRUE, k = 0)
Arguments
DATA |
original data to perform a BADA on. |
scale |
a boolean, vector, or string. See |
center |
a boolean, vector, or string. See |
DESIGN |
a design matrix to indicate if rows belong to groups. Required for BADA. |
make_design_nominal |
a boolean. If TRUE (default), DESIGN is a vector that indicates groups (and will be dummy-coded). If FALSE, DESIGN is a dummy-coded matrix. |
group.masses |
a diagonal matrix or column-vector of masses for the groups. |
weights |
a diagonal matrix or column-vector of weights for the column items. |
graphs |
a boolean. If TRUE (default), graphs and plots are provided (via |
k |
number of components to return. |
Details
Note: BADA is a special case of PLS (tepPLS
,tepGPLS
) wherein DATA1 are data and DATA2 are a group-coded disjunctive matrix. This is also called mean-centered PLS (Krishnan et al., 2011).
Value
See epGPCA
(and also corePCA
) for details on what is returned. In addition to the values returned:
fii |
factor scores computed for supplemental observations |
dii |
squared distances for supplemental observations |
rii |
cosines for supplemental observations |
assign |
|
lx |
latent variables from DATA1 computed for observations |
ly |
latent variables from DATA2 computed for observations |
Author(s)
Derek Beaton
References
Abdi, H., and Williams, L.J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 433-459.
Abdi, H. and Williams, L.J. (2010). Correspondence analysis. In N.J. Salkind, D.M., Dougherty, & B. Frey (Eds.): Encyclopedia of Research Design. Thousand Oaks (CA): Sage. pp. 267-278.
Abdi, H. (2007). Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD). In N.J. Salkind (Ed.): Encyclopedia of Measurement and Statistics.Thousand Oaks (CA): Sage. pp. 907-912.
Abdi, H. & Williams, L.J. (2010). Barycentric discriminant analysis (BADIA). In N.J. Salkind, D.M., Dougherty, & B. Frey (Eds.): Encyclopedia of Research Design. Thousand Oaks (CA): Sage. pp. 64-75.
Abdi, H., Williams, L.J., Beaton, D., Posamentier, M., Harris, T.S., Krishnan, A., & Devous, M.D. (in press, 2012). Analysis of regional cerebral blood flow data to discriminate among Alzheimer's disease, fronto-temporal dementia, and elderly controls: A multi-block barycentric discriminant analysis (MUBADA) methodology. Journal of Alzheimer Disease, , -.
Abdi, H., Williams, L.J., Connolly, A.C., Gobbini, M.I., Dunlop, J.P., & Haxby, J.V. (2012). Multiple Subject Barycentric Discriminant Analysis (MUSUBADA): How to assign scans to categories without using spatial normalization. Computational and Mathematical Methods in Medicine, 2012, 1-15. doi:10.1155/2012/634165.
Krishnan, A., Williams, L. J., McIntosh, A. R., & Abdi, H. (2011). Partial Least Squares (PLS) methods for neuroimaging: A tutorial and review. NeuroImage, 56(2), 455 – 475.
See Also
corePCA
, epPCA
, epGPCA
, epMDS
For MatLab code: http://utd.edu/~derekbeaton/attachments/Software/matlab/MuSuBADA_V3.zip
Examples
data(bada.wine)
bada.res <- tepBADA(bada.wine$data,scale=FALSE,DESIGN=bada.wine$design,make_design_nominal=FALSE)