epPCA {ExPosition} | R Documentation |
epPCA: Principal Component Analysis (PCA) via ExPosition.
Description
Principal Component Analysis (PCA) via ExPosition.
Usage
epPCA(DATA, scale = TRUE, center = TRUE, DESIGN = NULL, make_design_nominal = TRUE,
graphs = TRUE, k = 0)
Arguments
DATA |
original data to perform a PCA on. |
scale |
a boolean, vector, or string. See |
center |
a boolean, vector, or string. See |
DESIGN |
a design matrix to indicate if rows belong to groups. |
make_design_nominal |
a boolean. If TRUE (default), DESIGN is a vector that indicates groups (and will be dummy-coded). If FALSE, DESIGN is a dummy-coded matrix. |
graphs |
a boolean. If TRUE (default), graphs and plots are provided (via |
k |
number of components to return. |
Details
epPCA
performs principal components analysis on a data matrix.
Value
See corePCA
for details on what is returned.
Author(s)
Derek Beaton
References
Abdi, H., and Williams, L.J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 433-459.
Abdi, H. (2007). Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD). In N.J. Salkind (Ed.): Encyclopedia of Measurement and Statistics.Thousand Oaks (CA): Sage. pp. 907-912.
See Also
Examples
data(words)
pca.words.res <- epPCA(words$data)