predict_diagram_kpca {TDApplied} | R Documentation |
Project persistence diagrams into a low-dimensional space via a pre-computed kernel PCA embedding.
Description
Compute the location in low-dimensional space of each element of a list of new persistence diagrams using a
previously-computed kernel PCA embedding (from the diagram_kpca
function).
Usage
predict_diagram_kpca(
new_diagrams,
K = NULL,
embedding,
num_workers = parallelly::availableCores(omit = 1)
)
Arguments
new_diagrams |
a list of persistence diagrams which are either the output of a persistent homology calculation like ripsDiag/ |
K |
an optional precomputed cross-Gram matrix of the new diagrams and the ones used in 'embedding', default NULL. If not NULL then 'new_diagrams' does not need to be supplied. |
embedding |
the output of a |
num_workers |
the number of cores used for parallel computation, default is one less than the number of cores on the machine. |
Value
the data projection (rotation), stored as a numeric matrix. Each row corresponds to the same-index diagram in 'new_diagrams'.
Author(s)
Shael Brown - shaelebrown@gmail.com
See Also
diagram_kpca
for embedding persistence diagrams into a low-dimensional space.
Examples
if(require("TDAstats"))
{
# create six diagrams
D1 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],
dim = 1,threshold = 2)
D2 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],
dim = 1,threshold = 2)
D3 <- TDAstats::calculate_homology(TDAstats::sphere3d[sample(1:100,20),],
dim = 1,threshold = 2)
D4 <- TDAstats::calculate_homology(TDAstats::sphere3d[sample(1:100,20),],
dim = 1,threshold = 2)
D5 <- TDAstats::calculate_homology(TDAstats::sphere3d[sample(1:100,20),],
dim = 1,threshold = 2)
D6 <- TDAstats::calculate_homology(TDAstats::sphere3d[sample(1:100,20),],
dim = 1,threshold = 2)
g <- list(D1,D2,D3,D4,D5,D6)
# calculate their 2D PCA embedding with sigma = t = 2 in dimension 0
pca <- diagram_kpca(diagrams = g,dim = 1,t = 2,sigma = 2,
features = 2,num_workers = 2,th = 1e-6)
# project two new diagrams onto old model
D7 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,50),],
dim = 0,threshold = 2)
D8 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,50),],
dim = 0,threshold = 2)
g_new <- list(D7,D8)
# calculate new embedding coordinates
new_pca <- predict_diagram_kpca(new_diagrams = g_new,embedding = pca,num_workers = 2)
# repeat with precomputed Gram matrix, gives same result but much faster
K <- gram_matrix(diagrams = g_new,other_diagrams = pca$diagrams,dim = pca$dim,
t = pca$t,sigma = pca$sigma,num_workers = 2)
new_pca <- predict_diagram_kpca(K = K,embedding = pca,num_workers = 2)
}