fmri_ROI_phase2 {TCIU} | R Documentation |
tensor-on-tensor regression on region of interest(ROI) of the brain
Description
This function takes a 4d fMRI data and detects locations where stimulus occurs
on each region of interest(ROI) of the brain using MultiwayRegression
. This function could be used as
an intermediate step of a three-phase analytics protocol to detect motor areas. The functions to implement this
three-phase protocol in a consecutive order is fmri_ROI_phase2
, fmri_ROI_phase3
and fmri_post_hoc
respectively.
Usage
fmri_ROI_phase2(
fmridata,
label_mask,
label_dict,
stimulus_idx,
stimulus_dur,
fmri.design_order = 2,
fmri.stimulus_TR = 3,
rrr_rank = 3,
method = "t_test",
parallel_computing = FALSE,
ncor = max(detectCores() - 2, 1)
)
Arguments
fmridata |
a 4d array which contains the spatial and temporal record of fmri result. |
label_mask |
a 3d nifti or 3d array of data that shows the labeled brain atlas. |
label_dict |
a dataframe or array or matrix to specify the indices and corresponding
names of the ROI. The input of this parameter could take one of the list outputs of the |
stimulus_idx |
a vector of the start time points of the time period when the fMRI data receives stimulation. |
stimulus_dur |
a vector of the time period when the fMRI data receives stimulation. |
fmri.design_order |
a parameter to specify the order of the polynomial drift terms in |
fmri.stimulus_TR |
a parameter to specify the time between scans in seconds in |
rrr_rank |
a parameter to specify the assumed rank of the coefficient array in |
method |
a string that represents method for calculating p-values from tensor-on-tensor regression coefficients. There are 2 options: 't_test' and 'corrected_t_test'. The default is 't_test'. 't_test' is to calculate the test statistics 't-value' across all voxels in the bounding box of ROI; 'corrected_t_test' is to calculate the test statistics 't-value' by first across each voxel on a temporal basis, and then across all voxels in the bounding box of ROI. |
parallel_computing |
a logical parameter to determine whether to use parallel computing to speed up the function or not. The default is FALSE. |
ncor |
number of cores for parallel computing. The default is the number of cores of the computer minus 2. |
Details
The function fmri_ROI_phase2
is used to detect locations where stimulus occurs by calculating the p-values
of the ROI-based tensor-on-tensor regression. Two methods can be chosen to calculate the p-values from the regression coefficients.
Value
a 3d array storing ROI-based tensor regression p-values for the 4d fMRI data
Author(s)
SOCR team <http://socr.umich.edu/people/>
Examples
# sample 3D data of labeled brain atlas provided by the package
# this example will use parallel computing and take about ten minutes to finish
dim(mask_label)
# sample dataframe of ROI-based indices and names provided by the package
dim(mask_dict)
# sample 3D data of mask provided by the package
dim(mask)
# calculated p-values
set.seed(1)
fmri_generate = fmri_simulate_func(dim_data = c(64, 64, 40), mask = mask)
fmridata = fmri_generate$fmri_data
stimulus_idx = fmri_generate$ons
stimulus_dur = fmri_generate$dur
# the function will may take a long time, see examples in demo function or vignettes