Param.lognorm {TAR} | R Documentation |
Estimate a TAR model using Gibbs Sampler given the structural parameters.
Description
This function estimate a TAR model using Gibbs Sampler given the structural parameters, i.e. the number of regimes, thresholds and autoregressive orders.
Usage
Param.lognorm(Z, X, l, r, K, n.sim = 500, p.burnin = 0.2, n.thin = 3)
Arguments
Z |
The threshold series |
X |
The series of interest |
l |
The number of regimes. |
r |
The vector of thresholds for the series |
K |
The vector containing the autoregressive orders of the l regimes. |
n.sim |
Number of iteration for the Gibbs Sampler |
p.burnin |
Percentage of iterations used for burn-in |
n.thin |
Thinnin factor for the Gibbs Sampler |
Details
The TAR model is given by
X_t=a_0^{(j)} + \sum_{i=1}^{k_j}a_i^{(j)}X_{t-i}+h^{(j)}e_t
when Z_t\in (r_{j-1},r_j]
for som j
(j=1,\cdots,l
).
the \{Z_t\}
is the threshold process, l
is the number of regimes, k_j
is the autoregressive order in the regime j
. a_i^{(j)}
with i=0,1,\cdots,k_j
denote the autoregressive coefficients, while h^{(j)}
denote the variance weights. \{e_t\}
is the Gaussian white noise process N(0,1)
.
Value
The function returns the autoregressive coefficients matrix theta and variance weights H
. Rows of the matrix theta represent regimes
Author(s)
Hanwen Zhang <hanwenzhang at usantotomas.edu.co>
References
Nieto, F. H. (2005), Modeling Bivariate Threshold Autoregressive Processes in the Presence of Missing Data. Communications in Statistics. Theory and Methods, 34; 905-930
See Also
Examples
# Example 1, TAR model with 2 regimes
#' set.seed(12345678)
Z<-arima.sim(n=500,list(ar=c(0.5)))
l <- 2
r <- 0
K <- c(2,1)
theta <- matrix(c(1,0.5,-0.3,-0.5,-0.7,NA),nrow=l)
H <- c(1, 1.3)
X <- simu.tar.lognorm(Z,l,r,K,theta,H)
# res <- Param.lognorm(Z,X,l,r,K)
# Example 2, TAR model with 3 regimes
Z<-arima.sim(n=300, list(ar=c(0.5)))
l <- 3
r <- c(-0.6, 0.6)
K <- c(1, 2, 1)
theta <- matrix(c(1,0.5,-0.5,-0.5,0.2,-0.7,NA, 0.5,NA), nrow=l)
H <- c(1, 1.5, 2)
X <- simu.tar.lognorm(Z, l, r, K, theta, H)
# res <- Param.lognorm(Z,X,l,r,K)