ARorder.norm {TAR} | R Documentation |
Identify the autoregressive orders for a Gaussian TAR model given the number of regimes and thresholds.
Description
This function identify the autoregressive orders for a TAR model with Gaussian noise process given the number of regimes and thresholds.
Usage
ARorder.norm(Z, X, l, r, k_Max = 3, k_Min = 0, n.sim = 500,
p.burnin = 0.3, n.thin = 1)
Arguments
Z |
The threshold series |
X |
The series of interest |
l |
The number of regimes. |
r |
The vector of thresholds for the series {Z_t}. |
k_Max |
The minimum value for each autoregressive order. The default is 3. |
k_Min |
The maximum value for each autoregressive order. The default is 0. |
n.sim |
Number of iteration for the Gibbs Sampler |
p.burnin |
Percentage of iterations used for |
n.thin |
Thinnin factor for the Gibbs Sampler |
Details
The TAR model is given by
X_t=a_0^{(j)} + \sum_{i=1}^{k_j}a_i^{(j)}X_{t-i}+h^{(j)}e_t
when Z_t\in (r_{j-1},r_j]
for som j
(j=1,\cdots,l
).
the \{Z_t\}
is the threshold process, l
is the number of regimes, k_j
is the autoregressive order in the regime j
. a_i^{(j)}
with i=0,1,\cdots,k_j
denote the autoregressive coefficients, while h^{(j)}
denote the variance weights. \{e_t\}
is the Gaussian white noise process N(0,1)
.
Value
The identified autoregressive orders with posterior probabilities
Author(s)
Hanwen Zhang <hanwenzhang at usantotomas.edu.co>
References
Nieto, F. H. (2005), Modeling Bivariate Threshold Autoregressive Processes in the Presence of Missing Data. Communications in Statistics. Theory and Methods, 34; 905-930
See Also
Examples
set.seed(123456789)
Z<-arima.sim(n=300,list(ar=c(0.5)))
l <- 2
r <- 0
K <- c(2,1)
theta <- matrix(c(1,-0.5,0.5,-0.7,-0.3,NA), nrow=l)
H <- c(1, 1.5)
X <- simu.tar.norm(Z,l,r,K,theta,H)
#res <- ARorder.norm(Z,X,l,r)
#res$K.est
#res$K.prob