ARorder.lognorm {TAR} | R Documentation |
Identify the autoregressive orders for a log-normal TAR model given the number of regimes and thresholds.
Description
This function identify the autoregressive orders for a log-normal TAR model given the number of regimes and thresholds.
Usage
ARorder.lognorm(Z, X, l, r, k_Max = 3, k_Min = 0, n.sim = 500,
p.burnin = 0.3, n.thin = 1)
Arguments
Z |
The threshold series |
X |
The series of interest |
l |
The number of regimes. |
r |
The vector of thresholds for the series {Z_t}. |
k_Max |
The minimum value for each autoregressive order. The default is 3. |
k_Min |
The maximum value for each autoregressive order. The default is 0. |
n.sim |
Number of iteration for the Gibbs Sampler |
p.burnin |
Percentage of iterations used for burn-in |
n.thin |
Thinnin factor for the Gibbs Sampler |
Details
The log-normal TAR model is given by
when for some
(
).
the
is the threshold process,
is the number of regimes,
is the autoregressive order in the regime
.
with
denote the autoregressive coefficients, while
denote the variance weights.
is the Gaussian white noise process
.
Value
The identified autoregressive orders with posterior probabilities
Author(s)
Hanwen Zhang <hanwenzhang at usantotomas.edu.co>
References
Nieto, F. H. (2005), Modeling Bivariate Threshold Autoregressive Processes in the Presence of Missing Data. Communications in Statistics. Theory and Methods, 34; 905-930
See Also
simu.tar.lognorm, ARorder.norm
Examples
set.seed(12345678)
Z<-arima.sim(n=500,list(ar=c(0.5)))
l <- 2
r <- 0
K <- c(2,1)
theta <- matrix(c(1,0.5,-0.3,-0.5,-0.7,NA),nrow=l)
H <- c(1, 1.3)
X <- simu.tar.lognorm(Z,l,r,K,theta,H)
#res <- ARorder.lognorm(Z,X,l,r)
#res$K.est
#res$K.prob