IV.event {SurrogateOutcome} | R Documentation |
Calculates the incremental value of the surrogate outcome information
Description
Calculates the incremental value of the surrogate outcome information
Usage
IV.event(xone, xzero, deltaone, deltazero, sone, szero, t, landmark, number = 40,
transform = FALSE, extrapolate = TRUE, std = FALSE, conf.int = FALSE,
weight.perturb = NULL, type = "np")
Arguments
xone |
numeric vector, observed event times for the primary outcome in the treatment group. |
xzero |
numeric vector, observed event times for the primary outcome in the control group. |
deltaone |
numeric vector, event/censoring indicators for the primary outcome in the treatment group. |
deltazero |
numeric vector, event/censoring indicators for the primary outcome in the control group. |
sone |
numeric vector, observed event times for the surrogate outcome in the treatment group. |
szero |
numeric vector, observed event times for the surrogate outcome in the control group. |
t |
time of interest for treatment effect. |
landmark |
landmark time of interest, |
number |
number of points for RMST calculation, default is 40. |
transform |
TRUE or FALSE; indicates whether a transformation should be used, default is FALSE. |
extrapolate |
TRUE or FALSE; indicates whether local constant extrapolation should be used, default is FALSE. |
std |
TRUE or FALSE; indicates whether standard error estimates should be provided, default is FALSE. Estimates are calculated using perturbation-resampling. Two versions are provided: one that takes the standard deviation of the perturbed estimates (denoted as "sd") and one that takes the median absolute deviation (denoted as "mad"). |
conf.int |
TRUE or FALSE; indicates whether 95% confidence intervals should be provided. Confidence intervals are calculated using the percentiles of perturbed estimates, default is FALSE. If this is TRUE, standard error estimates are automatically provided. |
weight.perturb |
weights used for perturbation resampling. |
type |
Type of estimate that should be provided; options are "np" for the nonparametric estimate or "semi" for the semiparametric estimate, default is "np". |
Details
The incremental value of the surrogate outcome information only is quantified as IV_S(t,t_0) = R_Q(t,t_0) - R_T(t,t_0)
where the definition and estimation procedures for R_Q(t,t_0)
and R_T(t,t_0)
are described in the documentation for R.q.event and R.t.estimate, respectively. The estimate of the incremental value is \hat{IV}_S(t,t_0) = \hat{R}_Q(t,t_0) - \hat{R}_T(t,t_0)
.
Value
A list is returned:
delta |
the estimate, |
delta.q |
the estimate, |
R.q |
the estimate, |
delta.t |
the estimate, |
R.t |
the estimate, |
IV |
the estimated incremental value of the surrogate outcome information, described above. |
delta.sd |
the standard error estimate of |
delta.mad |
the standard error estimate of |
delta.q.sd |
the standard error estimate of |
delta.q.mad |
the standard error estimate of |
R.q.sd |
the standard error estimate of |
R.q.mad |
the standard error estimate of |
delta.t.sd |
the standard error estimate of |
delta.t.mad |
the standard error estimate of |
R.t.sd |
the standard error estimate of |
R.t.mad |
the standard error estimate of |
IV.sd |
the standard error estimate of the incremental value; if std = TRUE or conf.int = TRUE. |
IV.mad |
the standard error estimate of the incremental value using the median absolute deviation; if std = TRUE or conf.int = TRUE. |
conf.int.delta |
a vector of size 2; the 95% confidence interval for |
conf.int.delta.q |
a vector of size 2; the 95% confidence interval for |
conf.int.R.q |
a vector of size 2; the 95% confidence interval for |
conf.int.delta.t |
a vector of size 2; the 95% confidence interval for |
conf.int.R.t |
a vector of size 2; the 95% confidence interval for |
conf.int.IV |
a vector of size 2; the 95% confidence interval for the incremental value based on sample quantiles of the perturbed values; if conf.int = TRUE. |
Author(s)
Layla Parast
References
Parast L, Tian L, and Cai T (2020). Assessing the Value of a Censored Surrogate Outcome. Lifetime Data Analysis, 26(2):245-265.
Examples
data(ExampleData)
names(ExampleData)
IV.event(xone = ExampleData$x1, xzero = ExampleData$x0, deltaone = ExampleData$delta1,
deltazero = ExampleData$delta0, sone = ExampleData$s1, szero = ExampleData$s0, t = 5,
landmark=2, type = "np")
IV.event(xone = ExampleData$x1, xzero = ExampleData$x0, deltaone = ExampleData$delta1,
deltazero = ExampleData$delta0, sone = ExampleData$s1, szero = ExampleData$s0, t = 5,
landmark=2, type = "np", std = TRUE, conf.int = TRUE)