| cbd_stan {StanMoMo} | R Documentation | 
Bayesian Cairns-Blake-Dowd (CBD) model with Stan
Description
Fit and Forecast Bayesian CBD model. The model can be fitted with a Poisson or Negative-Binomial distribution. The function outputs posteriors distributions for each parameter, predicted death rates and log-likelihoods.
Usage
cbd_stan(
  death,
  exposure,
  age,
  forecast,
  validation = 0,
  family = c("poisson", "nb"),
  ...
)
Arguments
| death | Matrix of deaths. | 
| exposure | Matrix of exposures. | 
| age | Vector of ages. | 
| forecast | Number of years to forecast. | 
| validation | Number of years for validation. | 
| family | specifies the random component of the mortality model.  | 
| ... | Arguments passed to  | 
Details
The created model is either a log-Poisson or a log-Negative-Binomial version of the CBD model:
D_{x,t} \sim \mathcal{P}(\mu_{x,t} e_{x,t})
or
D_{x,t}\sim NB\left(\mu_{x,t} e_{x,t},\phi\right)
with
\log \mu_{xt} = \kappa_t^{(1)} + (x-\bar{x})\kappa_t^{(2)},
where \bar{x} is the average age in the data.
For the period terms, we consider a multivariate random walk with drift:
\boldsymbol{\kappa}_{t}=\boldsymbol{c}+\boldsymbol{\kappa}_{t-1}+\boldsymbol{\epsilon}_{t}^{\kappa},\quad \bm{\kappa}_{t}=\left(\begin{array}{c}\kappa_{t}^{(1)} \\\kappa_{t}^{(2)}\end{array}\right), \quad \boldsymbol{\epsilon}_{t}^{\kappa} \sim N\left(\mathbf{0}, \Sigma\right),
with normal priors: \boldsymbol{c} \sim N(0,10).
The variance-covariance matrix of the error term is defined by
\boldsymbol{\Sigma}=\left(\begin{array}{cc}\sigma_1^{2} & \rho_{\Sigma} \sigma_1 \sigma_2 \\\rho_{\Sigma} \sigma_1 \sigma_{Y} & \sigma_2^{2}\end{array}\right)
where the variance coefficients have independent exponential priors: \sigma_1, \sigma_2 \sim Exp(0.1)
and the correlation parameter has a uniform prior: \rho_{\Sigma} \sim U\left[-1,1\right].
As for the other models, the overdispersion parameter has a prior distribution given by
\frac{1}{\phi} \sim Half-N(0,1).
Value
An object of class stanfit returned by rstan::sampling
References
Cairns, A. J. G., Blake, D., & Dowd, K. (2006). A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration. Journal of Risk and Insurance, 73(4), 687-718.
Examples
#10-year forecasts for French data for ages 50-90 and years 1970-2017 with a log-NB model
ages.fit<-50:90
years.fit<-1970:2017
deathFR<-FRMaleData$Dxt[formatC(ages.fit),formatC(years.fit)]
exposureFR<-FRMaleData$Ext[formatC(ages.fit),formatC(years.fit)]
iterations<-50 # Toy example, consider at least 2000 iterations
fitCBD=cbd_stan(death = deathFR,exposure=exposureFR, age=ages.fit, forecast = 10,
family = "poisson",iter=iterations,chains=1)