matern_pc_prior {SpatialGEV} | R Documentation |
Helper funcion to specify a Penalized Complexity (PC) prior on the Matern hyperparameters
Description
Helper funcion to specify a Penalized Complexity (PC) prior on the Matern hyperparameters
Usage
matern_pc_prior(rho_0, p_rho, sig_0, p_sig)
Arguments
rho_0 |
Hyperparameter for PC prior on the range parameter. Must be positive. See details. |
p_rho |
Hyperparameter for PC prior on the range parameter. Must be between 0 and 1. See details. |
sig_0 |
Hyperparameter for PC prior on the scale parameter. Must be positive. See details. |
p_sig |
Hyperparameter for PC prior on the scale parameter. Must be between 0 and 1. See details. |
Details
The joint prior on rho
and sig
achieves
P(rho < rho_0) = p_rho,
and
P(sig > sig_0) = p_sig,
where rho = sqrt(8*nu)/kappa
.
Value
A list to provide to the matern_pc_prior
argument of spatialGEV_fit
.
References
Simpson, D., Rue, H., Riebler, A., Martins, T. G., & Sørbye, S. H. (2017). Penalising model component complexity: A principled, practical approach to construct priors. Statistical Science.
Examples
n_loc <- 20
y <- simulatedData2$y[1:n_loc]
locs <- simulatedData2$locs[1:n_loc,]
fit <- spatialGEV_fit(
data = y,
locs = locs,
random = "abs",
init_param = list(
a = rep(0, n_loc),
log_b = rep(0, n_loc),
s = rep(-2, n_loc),
beta_a = 0,
beta_b = 0,
beta_s = -2,
log_sigma_a = 0,
log_kappa_a = 0,
log_sigma_b = 0,
log_kappa_b = 0,
log_sigma_s = 0,
log_kappa_s = 0
),
reparam_s = "positive",
kernel = "matern",
beta_prior = list(
beta_a=c(0,100),
beta_b=c(0,10),
beta_s=c(0,10)
),
matern_pc_prior = list(
matern_a=matern_pc_prior(1e5,0.95,5,0.1),
matern_b=matern_pc_prior(1e5,0.95,3,0.1),
matern_s=matern_pc_prior(1e2,0.95,1,0.1)
)
)