margin fits {SpatialExtremes} | R Documentation |
Fits univariate extreme value distributions to data
Description
These functions fit the generalised extreme value and generalised Pareto distribution to data using maximum likelihood.
Usage
gevmle(x, ..., method = "Nelder")
gpdmle(x, threshold, ..., method = "Nelder")
Arguments
x |
Numeric vector of observations |
... |
Optional arguments to be passed to the
|
threshold |
Numeric. The threshold value. |
method |
The numerical optimisation method to be used. |
Details
These two functions are “extremely light” functions to fit the
GEV/GPD. These functions are mainly useful to compute starting values
for the Schlather and Smith model - see fitmaxstab
.
If more refined (univariate) analysis have to be performed, users should use more specialised packages - e.g. POT, evd, ismev, ....
Value
A vector for the estimated parameters of the GEV/GPD.
Author(s)
Mathieu Ribatet
Examples
## 1 - GEV fit
x <- rep(NA, 100)
for (i in 1:100)
x[i] <- max(rnorm(365))
gevmle(x)
## 2- GPD fit
x <- rnorm(10000)
##we need to fix a threshold
u <- quantile(x, 0.99)
gpdmle(x, u)
[Package SpatialExtremes version 2.1-0 Index]