lmadogram {SpatialExtremes} | R Documentation |
Computes the lambda-madogram
Description
Computes the lambda-madogram for max-stable processes.
Usage
lmadogram(data, coord, n.bins, xlab, ylab, zlab, n.lambda = 11, marge =
"emp", col = terrain.colors(50, alpha = 0.5), theta = 90, phi = 20,
border = NA, ...)
Arguments
data |
A matrix representing the data. Each column corresponds to one location. |
coord |
A matrix that gives the coordinates of each location. Each row corresponds to one location. |
n.bins |
The number of bins to be used. If missing, pairwise lambda-madogram estimates will be computed. |
xlab , ylab , zlab |
The x-axis, y-axis and z-axis labels. May be missing. |
n.lambda |
Integer giving the number of lambda values. |
marge |
Character string. If 'emp', probabilities of non exceedances are estimated using the empirical CDF. If 'mle' (default), maximum likelihood estimates are used. |
col |
The colors used to emphasize the gradient of the lambda-madogram. |
theta , phi , border |
Options to be passed to the
|
... |
Additional options to be passed to the |
Details
Let Z(x)
be a stationary process. The
\lambda
-madogram is defined as follows:
\nu_{\lambda}(h) = \frac{1}{2}\mbox{E}\left[|F^\lambda(Z(x+h)) -
F^{1-\lambda}(Z(x))| \right]
Value
A graphic and (invisibly) a matrix with the lag distances, the
\lambda
-madogram estimate.
Author(s)
Mathieu Ribatet
References
Naveau, P., Guillou, A., Cooley, D. and Diebolt, J. (2009) Modelling Pairwise Dependence of Maxima in Space. To appear in Biometrika.
See Also
Examples
n.site <- 50
locations <- matrix(runif(2*n.site, 0, 10), ncol = 2)
colnames(locations) <- c("lon", "lat")
##Simulate a max-stable process - with unit Frechet margins
data <- rmaxstab(40, locations, cov.mod = "whitmat", nugget = 0, range = 1,
smooth = 2)
##Compute the lambda-madogram
lmadogram(data, locations, n.bins = 80)