kriging {SpatialExtremes} | R Documentation |
Simple kriging interpolation
Description
This function interpolates a zero mean Gaussian random field using the simple kriging predictor.
Usage
kriging(data, data.coord, krig.coord, cov.mod = "whitmat", sill, range,
smooth, smooth2 = NULL, grid = FALSE, only.weights = FALSE)
Arguments
data |
A numeric vector or matrix. If |
data.coord |
A numeric vector or matrix specifying the
coordinates of the observed data. If |
krig.coord |
A numeric vector or matrix specifying the
coordinates where the kriging predictor has to be computed. If
|
cov.mod |
A character string specifying the covariance function family. Must be one of "whitmat", "powexp", "cauchy", "bessel" or "caugen" for the Whittle-Matern, the powered exponential, the Cauchy, the Bessel or the generalized Cauchy covariance families. |
sill , range , smooth , smooth2 |
Numerics specifiying the sill, range, smooth and, if any, the second smooth parameters of the covariance function. |
grid |
Logical. Does |
only.weights |
Logical. Should only the kriging weights be
computed? If |
Value
A list with components
coord |
The coordinates where the kriging predictor has been computed; |
krig.est |
The kriging predictor estimates; |
grid |
Does |
weights |
A matrix giving the kriging weights: each column corresponds to one prediction location. |
Author(s)
Mathieu Ribatet
References
Chiles, J.-P. and Delfiner, P. (1999) Geostatistics, Modeling Spatial Uncertainty Wiley Series in Probability and Statistics.
See Also
condrgp
, rgp
, covariance
.
Examples
## Kriging from a single realisation
n.site <- 50
n.pred <- 512
x.obs <- runif(n.site, -100, 100)
x.pred <- seq(-100, 100, length = n.pred)
data <- rgp(1, x.obs, "whitmat", sill = 1, range = 10, smooth = 0.75)
krig <- kriging(data, x.obs, x.pred, "whitmat", sill = 1, range = 10,
smooth = 0.75)
plot(krig$coord, krig$krig.est, type = "l", xlab = "x", ylab =
expression(hat(Y)(x)))
points(x.obs, data, col = 2, pch = 21, bg = 2)
## Kriging from several realisations
n.real <- 3
data <- rgp(n.real, x.obs, "whitmat", sill = 1, range = 10, smooth = 0.75)
krig <- kriging(data, x.obs, x.pred, "whitmat", sill = 1, range = 10,
smooth = 0.75)
matplot(krig$coord, t(krig$krig.est), type = "l", xlab = "x", ylab =
expression(hat(Y)(x)), lty = 1)
matpoints(x.obs, t(data), pch = 21, col = 1:n.real, bg = 1:n.real)
title("Three kriging predictors in one shot")
## Two dimensional kriging on a grid
x.obs <- matrix(runif(2 * n.site, -100, 100), ncol = 2)
x <- y <- seq(-100, 100, length = 100)
x.pred <- cbind(x, y)
data <- rgp(1, x.obs, "whitmat", sill = 1, range = 10, smooth = 0.75)
krig <- kriging(data, x.obs, x.pred, "whitmat", sill = 1, range = 10,
smooth = 0.75, grid = TRUE)
z.lim <- range(c(data, krig$krig.est))
breaks <- seq(z.lim[1], z.lim[2], length = 65)
col <- heat.colors(64)
idx <- as.numeric(cut(data, breaks))
image(x, y, krig$krig.est, col = col, breaks = breaks)
points(x.obs, bg = col[idx], pch = 21)
## Note how the background colors of the above points matches the ones
## returned by the image function