condrmaxstab {SpatialExtremes} | R Documentation |
Conditional simulation of max-stable processes
Description
This function performs conditional simulation of various max-stable processes.
Usage
condrmaxstab(k = 1, coord, cond.coord, cond.data, cov.mod = "powexp",
..., do.sim = TRUE, thin = n.cond, burnin = 50, parts)
Arguments
k |
An integer. The number of conditional simulations to be generated. |
coord |
A vector or matrix that gives the coordinates of each location. Each row corresponds to one location - if any. |
cond.coord |
A vector or matrix that gives the coordinates of each conditional location. Each row corresponds to one location - if any. |
cond.data |
A vector that gives the conditional values at the corresponding conditioning locations. Each row corresponds to one location - if any. |
cov.mod |
A character string that gives the max-stable model. This must be one of "brown" for the Brown-Resnick model, or "whitmat", "cauchy", "powexp" and "bessel" for the Schlather model with the given correlation family. |
... |
The parameters of the max-stable model. See
|
do.sim |
A logical value. If |
thin |
A positive integer giving by which amount the generated Markov chain should be thinned. This is only useful when the number of conditioning locations is greater than 7. |
burnin |
A positive integer giving the duration of the burnin period of the Markov chain. |
parts |
A matrix giving the hitting scenarios. Each row corresponds to one hitting scenarios. If missing then a Gibbs sampler will be used to generate such hitting scenarios. |
Details
The algorithm consists in three steps:
Draw a random partition
\theta
from\Pr\{\theta = \tau \mid Z(x) = z\}
Given the random partition, draw the extremal functions from
\Pr\{\varphi^+ \in \cdot \mid Z(x) = z, \theta = \tau\}
Independently, draw the sub-extremal functions, i.e.,
\max_{i \ge 1} \varphi_i 1_{\{\varphi_i(x) < z\}}
The distribution in Step 1 is usually intractable and in such cases a random scan Gibbs sampler will be used to sample from this distribution.
Value
This function returns a list whose components are
sim |
The conditional simulations. Beware the first values corresponds to the conditioning values. |
sub.ext.fct |
The values of the sub-extremal functions. |
ext.fct |
The values of the extremal functions. |
timings |
The timings in seconds for each step of the algorithm. |
Warning
This function can be extremely time consuming when the number of conditioning locations is large.
Author(s)
Mathieu Ribatet
References
Dombry, C. and Eyi-Minko, F. (2012) Regular conditional distributions of max infinitely divisible processes. Submitted.
Dombry, C., Eyi-Minko, F. and Ribatet, M. (2012) Conditional simulation of max-stable processes. To appear in Biometrika.
See Also
Examples
n.sim <- 50
n.cond <- 5
range <- 10
smooth <- 1.5
n.site <- 200
coord <- seq(-5, 5, length = n.site)
cond.coord <- seq(-4, 4, length = n.cond)
all.coord <- c(cond.coord, coord)
all.cond.data <- rmaxstab(1, all.coord, "powexp", nugget = 0, range = range,
smooth = smooth)
cond.data <- all.cond.data[1:n.cond]
ans <- condrmaxstab(n.sim, coord, cond.coord, cond.data, range = range,
smooth = smooth, cov.mod = "powexp")
idx <- order(all.coord)
matplot(coord, t(log(ans$sim)), type = "l", col = "grey", lty = 1,
xlab = expression(x), ylab = expression(Z(x)))
lines(all.coord[idx], log(all.cond.data)[idx])
points(cond.coord, log(cond.data), pch = 15, col = 2)