condmap {SpatialExtremes} | R Documentation |
Produces a conditional 2D map from a fitted max-stable process
Description
Produces a conditional 2D map from a fitted max-stable process.
Usage
condmap(fitted, fix.coord, x, y, covariates = NULL, ret.per1 = 100,
ret.per2 = ret.per1, col = terrain.colors(64), plot.contour = TRUE,
...)
Arguments
fitted |
An object of class |
fix.coord |
The spatial coordinates of the location from which the conditional quantile is computed. |
x , y |
Numeric vector defining the grid at which the levels are computed. |
covariates |
An array specifying the covariates at each grid
point defined by |
ret.per1 , ret.per2 |
Numerics giving the return period for which the quantile map is plotted. See details. |
col |
A list of colors such as that generated by 'rainbow', 'heat.colors', 'topo.colors', 'terrain.colors' or similar functions. |
plot.contour |
Logical. If |
... |
Several arguments to be passed to the |
Details
The function solves the following equation:
\Pr\left[Z(x_2) > z_2 | Z(x_1) > z_1 \right] =
\frac{1}{T_2}
where z_1 = -1 / \log(1 - 1/T_1)
.
In other words, it computes, given that at location x_1
we
exceed the level z_1
, the levels which is expected to be
exceeded in average every T_2
year.
Value
A plot. Additionally, a list with the details for plotting the map is returned invisibly.
Author(s)
Mathieu Ribatet
See Also
map
, filled.contour
,
heatmap
, heat.colors
,
topo.colors
, terrain.colors
,
rainbow
Examples
##Define the coordinate of each location
n.site <- 30
locations <- matrix(runif(2*n.site, 0, 10), ncol = 2)
colnames(locations) <- c("lon", "lat")
##Simulate a max-stable process - with unit Frechet margins
data <- rmaxstab(50, locations, cov.mod = "whitmat", nugget = 0, range =
2, smooth = 1)
##Now define the spatial model for the GEV parameters
param.loc <- -10 - 4 * locations[,1] + locations[,2]^2
param.scale <- 5 + locations[,2] + locations[,1]^2 / 10
param.shape <- rep(.2, n.site)
##Transform the unit Frechet margins to GEV
for (i in 1:n.site)
data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i],
param.shape[i])
##Define a model for the GEV margins to be fitted
##shape ~ 1 stands for the GEV shape parameter is constant
##over the region
loc.form <- loc ~ lon + I(lat^2)
scale.form <- scale ~ lat + I(lon^2)
shape.form <- shape ~ 1
## 1- Fit a max-stable process
fitted <- fitmaxstab(data, locations, "whitmat", loc.form, scale.form,
shape.form, nugget = 0)
cond.coord <- c(5.1, 5.1)
condmap(fitted, cond.coord, seq(0, 10, length = 25), seq(0,10, length
=25), ret.per1 = 100, ret.per2 = 1.5)
points(t(cond.coord), pch = "*", col = 2, cex = 2)