concprob {SpatialExtremes} | R Documentation |
Pairwise empirical and extremal concurrence probabilities
Description
This function computes the pairwise empirical or the pairwise extremal concurrence probability estimates.
Usage
concprob(data, coord, fitted, n.bins, add = FALSE, xlim = c(0,
max(dist)), ylim = c(min(0, concProb), max(1, concProb)), col = 1:2,
which = "kendall", xlab, ylab, block.size = floor(nrow(data)^(1/3)),
plot = TRUE, compute.std.err = FALSE, ...)
Arguments
data |
A matrix representing the data. Each column corresponds to one location. |
coord |
A matrix that gives the coordinates of each location. Each row corresponds to one location. |
fitted |
An object of class maxstab - usually the output of the
|
n.bins |
The number of bins to be used. If missing, pairwise F-madogram estimates will be computed. |
xlim , ylim |
A numeric vector of length 2 specifying the x/y coordinate ranges. |
col |
The colors used for the points and optionnaly the fitted curve. |
which |
A character string specifying which estimator should be used. Should be one of "emp" (empirical), "boot" (bootstrap version) and "kendall" (kendall based). |
xlab , ylab |
The labels for the x/y-axis (may be missing). |
add |
Logical. If |
block.size |
Integer specifying the block size for the empirical and bootstrap estimator. |
plot |
Logical. If |
compute.std.err |
Logical. If |
... |
Additional options to be passed to the |
Value
This function returns invisibly a matrix containing the pairwise distances and the concurrence probability estimates.
Author(s)
Mathieu Ribatet
References
Dombry, C., Ribatet, M. and Stoev, S. (2017) Probabilities of concurrent extremes. To appear in JASA
See Also
Examples
n.site <- 25
locations <- matrix(runif(2*n.site, 0, 10), ncol = 2)
colnames(locations) <- c("lon", "lat")
##Simulate a max-stable process - with unit Frechet margins
n.obs <- 100
data <- rmaxstab(n.obs, locations, cov.mod = "whitmat", nugget = 0, range = 1,
smooth = 1.75)
##Compute the F-madogram
concprob(data, locations)
##Compare the F-madogram with a fitted max-stable process
fitted <- fitmaxstab(data, locations, "whitmat", nugget = 0)
concprob(fitted = fitted)