anova {SpatialExtremes} | R Documentation |
Anova Tables
Description
Computes analysis of deviance for objects of class 'maxstab' or 'spatgev'.
Usage
## S3 method for class 'maxstab'
anova(object, object2, method = "RJ", square = "chol", ...)
## S3 method for class 'spatgev'
anova(object, object2, method = "RJ", square = "chol", ...)
Arguments
object , object2 |
Two objects of class 'maxstab' or 'spatgev'. |
method |
Character string. Must be one of "CB" or "RJ" for the
Chandler and Bate or the Rotnitzky and Jewell approaches
respectively. See function
|
square |
The choice for the matrix square root. This is only useful for the 'CB' method. Must be one of 'chol' (Cholesky) or 'svd' (Singular Value Decomposition). |
... |
Other options to be passed to the |
Details
As ”maxstab” objects are fitted using pairwise likelihood, the model
is misspecified. As a consequence, the likelihood ratio statistic is
no longer \chi^2
distributed. To compute the anova
table, we use the methodology proposed by Rotnitzky and Jewell to
adjust the distribution of the likelihood ratio statistic.
Value
This function returns an object of class anova. These objects represent analysis-of-deviance tables.
Author(s)
Mathieu Ribatet
References
Chandler, R. E. and Bate, S. (2007) Inference for clustered data using the independence loglikelihood Biometrika, 94, 167–183.
Rotnitzky, A. and Jewell, N. (1990) Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. Biometrika 77, 485–497.
See Also
fitmaxstab
, fitspatgev
,
profile
, TIC
Examples
##Define the coordinates of each location
n.site <- 30
locations <- matrix(rnorm(2*n.site, sd = sqrt(.2)), ncol = 2)
colnames(locations) <- c("lon", "lat")
##Simulate a max-stable process - with unit Frechet margins
data <- rmaxstab(50, locations, cov.mod = "gauss", cov11 = 100, cov12 =
25, cov22 = 220)
##Now define the spatial model for the GEV parameters
param.loc <- -10 + 2 * locations[,2]
param.scale <- 5 + 2 * locations[,1] + locations[,2]^2
param.shape <- rep(0.2, n.site)
##Transform the unit Frechet margins to GEV
for (i in 1:n.site)
data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i],
param.shape[i])
##Define three models for the GEV margins to be fitted
loc.form <- loc ~ lat
scale.form <- scale ~ lon + I(lat^2)
shape.form <- shape ~ lon
M0 <- fitspatgev(data, locations, loc.form, scale.form, shape.form)
M1 <- fitspatgev(data, locations, loc.form, scale.form, shape.form,
shapeCoeff2 = 0)
##Model selection
anova(M0, M1)
anova(M0, M1, method = "CB", square = "svd")