TIC {SpatialExtremes} | R Documentation |
Takeuchi's information criterion
Description
Computes a the Takeuchi's information criterion which is equivalent to the AIC when the model is miss-specified.
Usage
TIC(object, ..., k = 2)
Arguments
object |
An object of class |
... |
Additional objects of class |
k |
Numeric. The penalty per parameter to be used. The case k = 2
(default) correspond to the classical TIC and |
Details
TIC is like AIC so that when comparing models one wants to get the lowest TIC score.
Value
Numeric.
Author(s)
Mathieu Ribatet
References
Gao, X. and Song, P. X.-K. (2009) Composite likelihood Bayesian information criteria for model selection in high dimensional data. Preprint.
Sakamoto, Y., Ishiguro, M., and Kitagawa G. (1986) Akaike Information Criterion Statistics. D. Reidel Publishing Company.
Varin, C. and Vidoni, P. (2005) A note on composite likelihood inference and model selection. Biometrika 92(3):519–528.
See Also
Examples
##Define the coordinate of each location
n.site <- 50
locations <- matrix(runif(2*n.site, 0, 100), ncol = 2)
colnames(locations) <- c("lon", "lat")
##Simulate a max-stable process - with unit Frechet margins
data <- rmaxstab(40, locations, cov.mod = "whitmat", nugget = 0.2, range =
30, smooth = 0.5)
M0 <- fitmaxstab(data, locations, "powexp", fit.marge = FALSE)
M1 <- fitmaxstab(data, locations, "cauchy", fit.marge = FALSE)
TIC(M0, M1)
TIC(M0, M1, k = log(nrow(data)))