DIC {SpatialExtremes} | R Documentation |
Deviance Information Criterion
Description
This function computes the Deviance Information Criterion (DIC), and related quantities, which is a hierarchical modeling generalization of the Akaike Information Criterion. It is useful for Bayesian model selection.
Usage
DIC(object, ..., fun = "mean")
Arguments
object |
An object of class |
... |
Optional arguments. Not implemented. |
fun |
A chararcter string giving the name of the function to be used to summarize the Markov chain. The default is to consider the posterior mean. |
Details
The deviance is
D(\theta) = -2 \log \pi(y \mid \theta),
where y
are the data, \theta
are the unknown
parameters of the models and \pi(y \mid \theta)
is
the likelihood function. Thus the expected deviance, a measure of how
well the model fits the data, is given by
\overline{D} = {\rm E}_{\theta}[D(\theta)],
while the effective number of parameters is
p_D = \overline{D} - D(\theta^*),
where \theta^*
is point estimate of the posterior
distribution, e.g., the posterior mean. Finally the DIC is given by
{\rm DIC} = p_D + \overline{D}.
In accordance with the AIC, models with smaller DIC should be preferred to models with larger DIC. Roughly speaking, differences of more than 10 might rule out the model with the higher DIC, differences between 5 and 10 are substantial.
Value
A vector of length 3 that returns the DIC, effective number of
parameters eNoP
and an estimate of the expected deviance
Dbar
.
Author(s)
Mathieu Ribatet
References
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. (2002) Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B 64, 583–639.
See Also
Examples
## Generate realizations from the model
n.site <- 15
n.obs <- 35
coord <- cbind(lon = runif(n.site, -10, 10), lat = runif(n.site, -10 , 10))
gp.loc <- rgp(1, coord, "powexp", sill = 4, range = 20, smooth = 1)
gp.scale <- rgp(1, coord, "powexp", sill = 0.4, range = 5, smooth = 1)
gp.shape <- rgp(1, coord, "powexp", sill = 0.01, range = 10, smooth = 1)
locs <- 26 + 0.5 * coord[,"lon"] + gp.loc
scales <- 10 + 0.2 * coord[,"lat"] + gp.scale
shapes <- 0.15 + gp.shape
data <- matrix(NA, n.obs, n.site)
for (i in 1:n.site)
data[,i] <- rgev(n.obs, locs[i], scales[i], shapes[i])
loc.form <- y ~ lon
scale.form <- y ~ lat
shape.form <- y ~ 1
hyper <- list()
hyper$sills <- list(loc = c(1,8), scale = c(1,1), shape = c(1,0.02))
hyper$ranges <- list(loc = c(2,20), scale = c(1,5), shape = c(1, 10))
hyper$smooths <- list(loc = c(1,1/3), scale = c(1,1/3), shape = c(1, 1/3))
hyper$betaMeans <- list(loc = rep(0, 2), scale = c(9, 0), shape = 0)
hyper$betaIcov <- list(loc = solve(diag(c(400, 100))),
scale = solve(diag(c(400, 100))),
shape = solve(diag(c(10), 1, 1)))
## We will use an exponential covariance function so the jump sizes for
## the shape parameter of the covariance function are null.
prop <- list(gev = c(2.5, 1.5, 0.3), ranges = c(40, 20, 20), smooths = c(0,0,0))
start <- list(sills = c(4, .36, 0.009), ranges = c(24, 17, 16), smooths
= c(1, 1, 1), beta = list(loc = c(26, 0), scale = c(10, 0),
shape = c(0.15)))
mc <- latent(data, coord, loc.form = loc.form, scale.form = scale.form,
shape.form = shape.form, hyper = hyper, prop = prop, start = start,
n = 500)
DIC(mc)