spte_semiparmreg {SpTe2M} | R Documentation |
Fit the semiparametric spatio-temporal model
Description
The function spte_semiparmreg
fits the semiparametric spatio-temporal
model to study the relationship between the response and covariates
by the method discussed in Qiu and Yang (2021), in which an
iterative algorithm is used to compute the estimated regression coefficients.
Usage
spte_semiparmreg(
y,
st,
x,
ht = NULL,
hs = NULL,
maxIter = 1000,
tol = 10^(-4),
stE = NULL
)
Arguments
y |
A vector of length |
st |
An |
x |
An |
ht |
The temporal kernel bandwidth |
hs |
The spatial kernel bandwidth |
maxIter |
A positive integer specifying the maximum number of iterations allowed. Default value is 1,000. |
tol |
A positive numeric value specifying the tolerance level for the convergence criterion. Default value is 0.0001. |
stE |
A three-column matrix specifying the spatial locations and times where we
want to calculate the estimate of the mean. Default is NULL, and
|
Value
bandwidth |
The bandwidths ( |
stE |
Same as the one in the arguments. |
muhat |
The estimated mean values at spatial locations and times
specified by |
beta |
The vector of the estimated regression coefficient vector. |
Author(s)
Kai Yang kayang@mcw.edu and Peihua Qiu
References
Qiu, P. and Yang, K. (2021). Effective Disease Surveillance by Using Covariate Information. Statistics in Medicine, 40, 5725-5745.
Examples
library(SpTe2M)
data(sim_dat)
y <- sim_dat$y; st <- sim_dat$st; x <- sim_dat$x
ids <- 1:500; y.sub <- y[ids]; st.sub <- st[ids,]; x.sub <- x[ids]
semi.est <- spte_semiparmreg(y.sub,st.sub,x.sub,maxIter=2)