spte_semiparmreg {SpTe2M} | R Documentation |
Fit the semiparametric spatio-temporal model
Description
The function spte_semiparmreg
fits the semiparametric spatio-temporal
model to study the relationship between the response y
and covariates
\bm{x}
by the method discussed in Qiu and Yang (2021), in which an
iterative algorithm is used to compute the estimated regression coefficients.
Usage
spte_semiparmreg(
y,
st,
x,
ht = NULL,
hs = NULL,
maxIter = 1000,
tol = 10^(-4),
stE = NULL
)
Arguments
y |
A vector of length |
st |
An |
x |
An |
ht |
The temporal kernel bandwidth |
hs |
The spatial kernel bandwidth |
maxIter |
A positive integer specifying the maximum number of iterations allowed. Default value is 1,000. |
tol |
A positive numeric value specifying the tolerance level for the convergence criterion. Default value is 0.0001. |
stE |
A three-column matrix specifying the spatial locations and times where we
want to calculate the estimate of the mean. Default is NULL, and
|
Value
bandwidth |
The bandwidths ( |
stE |
Same as the one in the arguments. |
muhat |
The estimated mean values at spatial locations and times
specified by |
beta |
The vector of the estimated regression coefficient vector. |
Author(s)
Kai Yang kayang@mcw.edu and Peihua Qiu
References
Qiu, P. and Yang, K. (2021). Effective Disease Surveillance by Using Covariate Information. Statistics in Medicine, 40, 5725-5745.
Examples
library(SpTe2M)
data(sim_dat)
y <- sim_dat$y; st <- sim_dat$st; x <- sim_dat$x
ids <- 1:500; y.sub <- y[ids]; st.sub <- st[ids,]; x.sub <- x[ids]
semi.est <- spte_semiparmreg(y.sub,st.sub,x.sub,maxIter=2)