plot.ABCSMC {SimBIID} | R Documentation |
Plots ABCSMC
objects
Description
Plot method for ABCSMC
objects.
Usage
## S3 method for class 'ABCSMC'
plot(
x,
type = c("post", "output"),
gen = NA,
joint = FALSE,
transfunc = NA,
...
)
Arguments
x |
An |
type |
Takes the value |
gen |
A vector of generations to plot. If left missing then defaults to all generations. |
joint |
A logical describing whether joint or marginal distributions are wanted. |
transfunc |
Is a |
... |
Not used here. |
Value
A plot of the ABC posterior distributions for different generations, or the distributions of the simulated summary measures for different generations.
See Also
ABCSMC
, print.ABCSMC
, summary.ABCSMC
Examples
## set up SIR simulation model
transitions <- c(
"S -> beta * S * I -> I",
"I -> gamma * I -> R"
)
compartments <- c("S", "I", "R")
pars <- c("beta", "gamma")
model <- mparseRcpp(
transitions = transitions,
compartments = compartments,
pars = pars
)
model <- compileRcpp(model)
## generate function to run simulators
## and return summary statistics
simSIR <- function(pars, data, tols, u, model) {
## run model
sims <- model(pars, 0, data[2] + tols[2], u)
## this returns a vector of the form:
## completed (1/0), t, S, I, R (here)
if(sims[1] == 0) {
## if simulation rejected
return(NA)
} else {
## extract finaltime and finalsize
finaltime <- sims[2]
finalsize <- sims[5]
}
## return vector if match, else return NA
if(all(abs(c(finalsize, finaltime) - data) <= tols)){
return(c(finalsize, finaltime))
} else {
return(NA)
}
}
## set priors
priors <- data.frame(
parnames = c("beta", "gamma"),
dist = rep("gamma", 2),
stringsAsFactors = FALSE
)
priors$p1 <- c(10, 10)
priors$p2 <- c(10^4, 10^2)
## define the targeted summary statistics
data <- c(
finalsize = 30,
finaltime = 76
)
## set initial states (1 initial infection
## in population of 120)
iniStates <- c(S = 119, I = 1, R = 0)
## set initial tolerances
tols <- c(
finalsize = 50,
finaltime = 50
)
## run 2 generations of ABC-SMC
## setting tolerance to be 50th
## percentile of the accepted
## tolerances at each generation
post <- ABCSMC(
x = data,
priors = priors,
func = simSIR,
u = iniStates,
tols = tols,
ptol = 0.2,
ngen = 2,
npart = 50,
model = model
)
post
## run one further generation
post <- ABCSMC(post, ptols = 0.5, ngen = 1)
post
summary(post)
## plot posteriors
plot(post)
## plot outputs
plot(post, "output")