| ggplot_SiZer {SiZer} | R Documentation |
Plot a SiZer map using 'ggplot2'
Description
Plot a 'SiZer' object that was created using 'SiZer()'
Usage
ggplot_SiZer(x, colorlist = c("red", "purple", "blue", "grey"))
Arguments
x |
An object created using 'SiZer()' |
colorlist |
What colors should be used. This is a vector that corresponds to 'decreasing', 'possibley zero', 'increasing', and 'insufficient data'. |
Details
The white lines in the SiZer map give a graphical representation
of the bandwidth. The horizontal distance between the lines is 2h.
Author(s)
Derek Sonderegger
References
Chaudhuri, P., and J. S. Marron. 1999. SiZer for exploration of structures in curves. Journal of the American Statistical Association 94:807-823.
Hannig, J., and J. S. Marron. 2006. Advanced distribution theory for SiZer. Journal of the American Statistical Association 101:484-499.
Sonderegger, D.L., Wang, H., Clements, W.H., and Noon, B.R. 2009. Using SiZer to detect thresholds in ecological data. Frontiers in Ecology and the Environment 7:190-195.
See Also
plot.SiZer, locally.weighted.polynomial
Examples
data('Arkansas')
x <- Arkansas$year
y <- Arkansas$sqrt.mayflies
plot(x,y)
# Calculate the SiZer map for the first derivative
SiZer.1 <- SiZer(x, y, h=c(.5,10), degree=1, derv=1, grid.length=21)
plot(SiZer.1)
plot(SiZer.1, ggplot2=TRUE)
ggplot_SiZer(SiZer.1)
# Calculate the SiZer map for the second derivative
SiZer.2 <- SiZer(x, y, h=c(.5,10), degree=2, derv=2, grid.length=21);
plot(SiZer.2)
plot(SiZer.2, ggplot2=TRUE)
ggplot_SiZer(SiZer.2)
# By setting the grid.length larger, we get a more detailed SiZer
# map but it takes longer to compute.
#
# SiZer.3 <- SiZer(x, y, h=c(.5,10), grid.length=100, degree=1, derv=1)
# plot(SiZer.3)