ggplot_SiZer {SiZer} | R Documentation |
Plot a SiZer map using 'ggplot2'
Description
Plot a 'SiZer' object that was created using 'SiZer()'
Usage
ggplot_SiZer(x, colorlist = c("red", "purple", "blue", "grey"))
Arguments
x |
An object created using 'SiZer()' |
colorlist |
What colors should be used. This is a vector that corresponds to 'decreasing', 'possibley zero', 'increasing', and 'insufficient data'. |
Details
The white lines in the SiZer map give a graphical representation
of the bandwidth. The horizontal distance between the lines is 2h
.
Author(s)
Derek Sonderegger
References
Chaudhuri, P., and J. S. Marron. 1999. SiZer for exploration of structures in curves. Journal of the American Statistical Association 94:807-823.
Hannig, J., and J. S. Marron. 2006. Advanced distribution theory for SiZer. Journal of the American Statistical Association 101:484-499.
Sonderegger, D.L., Wang, H., Clements, W.H., and Noon, B.R. 2009. Using SiZer to detect thresholds in ecological data. Frontiers in Ecology and the Environment 7:190-195.
See Also
plot.SiZer
, locally.weighted.polynomial
Examples
data('Arkansas')
x <- Arkansas$year
y <- Arkansas$sqrt.mayflies
plot(x,y)
# Calculate the SiZer map for the first derivative
SiZer.1 <- SiZer(x, y, h=c(.5,10), degree=1, derv=1, grid.length=21)
plot(SiZer.1)
plot(SiZer.1, ggplot2=TRUE)
ggplot_SiZer(SiZer.1)
# Calculate the SiZer map for the second derivative
SiZer.2 <- SiZer(x, y, h=c(.5,10), degree=2, derv=2, grid.length=21);
plot(SiZer.2)
plot(SiZer.2, ggplot2=TRUE)
ggplot_SiZer(SiZer.2)
# By setting the grid.length larger, we get a more detailed SiZer
# map but it takes longer to compute.
#
# SiZer.3 <- SiZer(x, y, h=c(.5,10), grid.length=100, degree=1, derv=1)
# plot(SiZer.3)