selectboost_cascade {SelectBoost} | R Documentation |
Selectboost_cascade
Description
Selectboost for Cascade inference.
Usage
selectboost(M, ...)
## S4 method for signature 'micro_array'
selectboost(
M,
Fabhat,
K = 5,
eps = 10^-5,
cv.subjects = TRUE,
ncores = 4,
use.parallel = FALSE,
verbose = FALSE,
group = group_func_2,
c0value = 0.95
)
Arguments
M |
Microarray class from the Cascade package. |
... |
Additionnal arguments. Not used. |
Fabhat |
F matrix inferred using the inference function from the Cascade package. |
K |
Number of crossvalidation folds. |
eps |
Threshold for assinging a zero value to an inferred parameter. Defaults to 10^-5. |
cv.subjects |
Crossvalidation is made subjectwise using leave one out. Discards the K option. |
ncores |
Numerical value. Number of cores for parallel computing.
Defaults to |
use.parallel |
Boolean. To use parallel computing (doMC) download the extended package from Github.
Set to |
verbose |
Boolean.
Defaults to |
group |
Function. The grouping function.
Defaults to |
c0value |
Numeric. c0 value to use for confidence computation.
Defaults to |
Details
Extending results from the Cascade package: providing confidence indices for the reverse engineered links.
Reference for the Cascade modelling Vallat, L., Kemper, C. a., Jung, N., Maumy-Bertrand, M., Bertrand, F., Meyer, N., Pocheville, A., Fisher, J. W., Gribben, J. G. et Bahram, S. (2013). Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 110(2), 459-64.
Reference for the Cascade package Jung, N., Bertrand, F., Bahram, S., Vallat, L. et Maumy-Bertrand, M. (2014). Cascade : A R package to study, predict and simulate the diffusion of a signal through a temporal gene network. Bioinformatics. ISSN 13674803..
Value
A network.confidence
object.
Author(s)
Frederic Bertrand, frederic.bertrand@utt.fr
References
selectBoost: a general algorithm to enhance the performance of variable selection methods in correlated datasets, Frédéric Bertrand, Ismaïl Aouadi, Nicolas Jung, Raphael Carapito, Laurent Vallat, Seiamak Bahram, Myriam Maumy-Bertrand, Bioinformatics, 2020. doi:10.1093/bioinformatics/btaa855
See Also
boost
, fastboost
, plot.selectboost
, inference
Other Selectboost functions:
autoboost()
,
boost
,
fastboost()
,
plot_selectboost_cascade
Examples
set.seed(314)
set.seed(314)
data(Cascade_example)
Fab_inf_C <- Net_inf_C@F
#By default community grouping of variables
set.seed(1)
net_confidence <- selectboost(M, Fab_inf_C)
net_confidence_.5 <- selectboost(M, Fab_inf_C, c0value = .5)
#With group_func_1, variables are grouped by thresholding the correlation matrix
net_confidence_thr <- selectboost(M, Fab_inf_C, group = group_func_1)