autoboost {SelectBoost} | R Documentation |
Autoboost
Description
All in one use of selectboost that avoids redondant fitting of distributions and saves some memory.
Usage
autoboost(
X,
Y,
ncores = 4,
group = group_func_1,
func = lasso_msgps_AICc,
corrfunc = "cor",
use.parallel = FALSE,
B = 100,
step.num = 0.1,
step.limit = "none",
risk = 0.05,
verbose = FALSE,
step.scale = "quantile",
normalize = TRUE,
steps.seq = NULL,
debug = FALSE,
version = "lars",
...
)
Arguments
X |
Numerical matrix. Matrix of the variables. |
Y |
Numerical vector or factor. Response vector. |
ncores |
Numerical value. Number of cores for parallel computing.
Defaults to |
group |
Function. The grouping function.
Defaults to |
func |
Function. The variable selection function.
Defaults to |
corrfunc |
Character value or function. Used to compute associations between
the variables. Defaults to |
use.parallel |
Boolean. To use parallel computing (doMC) download the extended package from Github.
Set to |
B |
Numerical value. Number of resampled fits of the model.
Defaults to |
step.num |
Numerical value. Step value for the c0 sequence.
Defaults to |
step.limit |
Character value. If "Pearson", truncates the c0 sequence using a
Pearson based p-value.
Defaults to |
risk |
Numerical value. Risk level when finding limits based on c0=0 values.
Defaults to |
verbose |
Boolean.
Defaults to |
step.scale |
Character value. How to compute the c0 sequence if not user-provided:
either "quantile" or "linear".
Defaults to |
normalize |
Boolean. Shall the X matrix be centered and scaled?
Defaults to |
steps.seq |
Numeric vector. User provided sequence of c0 values to use.
Defaults to |
debug |
Boolean value. If more results are required. Defaults to |
version |
Character value. Passed to the |
... |
. Arguments passed to the variable selection function used in |
Details
autoboost
returns a numeric matrix. For each of the variable (column)
and each of the c0 (row), the entry is proportion of times that the variable was
selected among the B resampled fits of the model. Fitting to the same group of variables is
only perfomed once (even if it occured for another value of c0), which greatly speeds up
the algorithm.
Value
A numeric matrix with attributes.
Author(s)
Frederic Bertrand, frederic.bertrand@utt.fr
References
selectBoost: a general algorithm to enhance the performance of variable selection methods in correlated datasets, Frédéric Bertrand, Ismaïl Aouadi, Nicolas Jung, Raphael Carapito, Laurent Vallat, Seiamak Bahram, Myriam Maumy-Bertrand, Bioinformatics, 2020. doi:10.1093/bioinformatics/btaa855
See Also
boost
, fastboost
, plot.selectboost
Other Selectboost functions:
boost
,
fastboost()
,
plot_selectboost_cascade
,
selectboost_cascade
Examples
set.seed(314)
xran=matrix(rnorm(75),15,5)
ybin=sample(0:1,15,replace=TRUE)
yran=rnorm(15)
set.seed(314)
#For quick test purpose, not meaningful, should be run with greater value of B
#and disabling parallel computing as well
res.autoboost <- autoboost(xran,yran,B=3,use.parallel=FALSE)
autoboost(xran,yran)
#Customize resampling levels
autoboost(xran,yran,steps.seq=c(.99,.95,.9))
#Binary logistic regression
autoboost(xran,ybin,func=lasso_cv_glmnet_bin_min)