AICc_BIC_glmnetB {SelectBoost} | R Documentation |
AICc and BIC for glmnet logistic models
Description
Compute AICc and BIC for glmnet logistic models.
Usage
rerr(v1, v2)
ridge_logistic(X, Y, lambda, beta0, beta, maxiter = 1000, tol = 1e-10)
BIC_glmnetB(Z, Y, glmnet.model, alpha, modelSet, reducer = "median")
AICc_glmnetB(Z, Y, glmnet.model, alpha, modelSet, reducer = "median")
Arguments
v1 |
A numeric vector. |
v2 |
A numeric vector. |
X |
A numeric matrix |
Y |
A numeric 0/1 vector. |
lambda |
A numeric value. |
beta0 |
A numeric value Initial intercept value. |
beta |
A numeric vector. Initial coefficient values. |
maxiter |
A numeric value. Maximum number of iterations. |
tol |
A numeric value. Tolerance value. |
Z |
A numeric matrix |
glmnet.model |
A fitted glmnet model. |
alpha |
A numeric value. |
modelSet |
Modelset to consider. |
reducer |
A character value. Reducer function. Either 'median' or 'mean'. |
Details
Calculate AICc and BIC for glmnet logistic models from the glmnetB function of the package rLogistic https://github.com/echi/rLogistic and adapted to deal with non finite exponential values in AICc and BIC computations
Value
A list relevant to model selection.
Author(s)
Frederic Bertrand, frederic.bertrand@utt.fr
References
Robust Parametric Classification and Variable Selection by a Minimum Distance Criterion, Chi and Scott, Journal of Computational and Graphical Statistics, 23(1), 2014, p111–128, doi:10.1080/10618600.2012.737296.
See Also
Examples
set.seed(314)
xran=matrix(rnorm(150),30,5)
ybin=sample(0:1,30,replace=TRUE)
glmnet.fit <- glmnet.fit <- glmnet::glmnet(xran,ybin,family="binomial",standardize=FALSE)
set.seed(314)
rerr(1:10,10:1)
set.seed(314)
ridge_logistic(xran,ybin,lambda=.5,beta0=rnorm(5),beta=rnorm(5,1))
set.seed(314)
if(is.factor(ybin)){ynum=unclass(ybin)-1} else {ynum=ybin}
subSample <- 1:min(ncol(xran),100)
BIC_glmnetB(xran,ynum,glmnet.fit,alpha=1,subSample, reducer='median')
set.seed(314)
if(is.factor(ybin)){ynum=unclass(ybin)-1} else {ynum=ybin}
subSample <- 1:min(ncol(xran),100)
AICc_glmnetB(xran,ynum,glmnet.fit,alpha=1,subSample, reducer='median')