pca {SYNCSA} | R Documentation |
Principal Components Analysis (PCA) with NA (missing data)
Description
The function use the option "pairwise.complete.obs" (in function cor
) for
calculate the correlation. The correlation between each pair of variables is computed
using all complete pairs of observations on those variables.
Usage
pca(data)
## S3 method for class 'pcasyncsa'
plot(
x,
show = c("variables", "individuals"),
axis = c(1, 2),
xlab = axis[1],
ylab = axis[2],
arrows = TRUE,
text = TRUE,
points = FALSE,
...
)
Arguments
data |
A data frame or matrix with individuals in rows and variables in columns. |
x |
A object of class pcasyncsa. |
show |
Draw "variables" or "individuals". |
axis |
Axis for draw, must have length equal to two (Default axis = c(1, 2)). |
xlab |
Text for x label (Default xlab = axis[1]). |
ylab |
Text for y label (Default ylab = axis[2]). |
arrows |
Logical argument (TRUE or FALSE) to specify if arrows are showed for variables (Default arrows = TRUE). |
text |
Logical argument (TRUE or FALSE) to specify if text are showed for individuals (Default text = TRUE). |
points |
Logical argument (TRUE or FALSE) to specify if points are showed for individuals (Default points = FALSE). |
... |
Parameters for |
Value
decomposition |
list with the results of decomposition of correlation matrix. |
eigenvalues |
Data frame containing all the eigenvalues, the percentage of inertia and the cumulative percentage of inertia. |
individuals |
Coordinates for the individuals. |
variables |
Correlation between original variables and axes. |
Author(s)
Vanderlei Julio Debastiani <vanderleidebastiani@yahoo.com.br>
See Also
Examples
data(ADRS)
traits<-ADRS$traits
# Some NA
traits[c(1,5),1]<-NA
traits[3,2]<-NA
traits
res<-pca(traits)
res
plot(res, show = "variables", arrows = TRUE)
plot(res, show = "individuals", axis = c(1, 2), text = TRUE)
plot(res, show = "individuals", text = FALSE, points = TRUE)