| pca {SYNCSA} | R Documentation |
Principal Components Analysis (PCA) with NA (missing data)
Description
The function use the option "pairwise.complete.obs" (in function cor) for
calculate the correlation. The correlation between each pair of variables is computed
using all complete pairs of observations on those variables.
Usage
pca(data)
## S3 method for class 'pcasyncsa'
plot(
x,
show = c("variables", "individuals"),
axis = c(1, 2),
xlab = axis[1],
ylab = axis[2],
arrows = TRUE,
text = TRUE,
points = FALSE,
...
)
Arguments
data |
A data frame or matrix with individuals in rows and variables in columns. |
x |
A object of class pcasyncsa. |
show |
Draw "variables" or "individuals". |
axis |
Axis for draw, must have length equal to two (Default axis = c(1, 2)). |
xlab |
Text for x label (Default xlab = axis[1]). |
ylab |
Text for y label (Default ylab = axis[2]). |
arrows |
Logical argument (TRUE or FALSE) to specify if arrows are showed for variables (Default arrows = TRUE). |
text |
Logical argument (TRUE or FALSE) to specify if text are showed for individuals (Default text = TRUE). |
points |
Logical argument (TRUE or FALSE) to specify if points are showed for individuals (Default points = FALSE). |
... |
Parameters for |
Value
decomposition |
list with the results of decomposition of correlation matrix. |
eigenvalues |
Data frame containing all the eigenvalues, the percentage of inertia and the cumulative percentage of inertia. |
individuals |
Coordinates for the individuals. |
variables |
Correlation between original variables and axes. |
Author(s)
Vanderlei Julio Debastiani <vanderleidebastiani@yahoo.com.br>
See Also
Examples
data(ADRS)
traits<-ADRS$traits
# Some NA
traits[c(1,5),1]<-NA
traits[3,2]<-NA
traits
res<-pca(traits)
res
plot(res, show = "variables", arrows = TRUE)
plot(res, show = "individuals", axis = c(1, 2), text = TRUE)
plot(res, show = "individuals", text = FALSE, points = TRUE)