threshold_identification {SWMPrExtension} | R Documentation |
Tabulate Threshold Exceedances
Description
Tabulate user-specified threshold exceedances
Usage
threshold_identification(swmpr_in, ...)
## S3 method for class 'swmpr'
threshold_identification(
swmpr_in,
param,
parameter_threshold,
threshold_type,
time_threshold = NULL,
...
)
Arguments
swmpr_in |
input swmpr object |
... |
arguments passed to other methods |
param |
vector of parameters to evaluate |
parameter_threshold |
vector of numerical thresholds to evaluate parameters against |
threshold_type |
vector of logical operators ('<', '>', '<=', '>=', '==', '!=') |
time_threshold |
The amount of time an event must last to be counted (in hours) |
Details
This function creates tabular summary of events when a user-specified threshold is exceeded.
Before using this function, the user must apply setstep
to normalize the datetimestamp
time step.
For MET and WQ data, the user must specify time_threshold
. This argument is the minimum duration that an event must last in order to be counted. For example, if time_threshold = 2
, param = "do_mgl"
, parameter_threshold = 2
, and threshold_type = "<"
then dissolved oxygen must be lower than 2 mg/L for more than two hours or the event will not be summarized in the final table. For NUT parameters, all exceedances are included in the tabular summary.
Recommended thresholds for chlorophyll-a, dissolved inorganic nitrogen, dissolved inorganic phosphorus, and dissolved oxygen can be found in the National Coastal Condition Assessment 2010 (USEPA 2016)
Value
Returns a data frame of threshold exceedances by parameter
Author(s)
Julie Padilla
References
United States Environmental Protection Agency (USEPA). 2015. "National Coastal Condition Assessment 2010". EPA 841-R-15-006. https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=OWOW&dirEntryId=327030
Examples
data("apacpwq")
wq <- apacpwq
dat_wq <- qaqc(wq, qaqc_keep = c(0, 3, 5))
dat_wq <- setstep(dat_wq)
wq_pars<- threshold_identification(dat_wq, param = c('do_mgl', 'ph', 'temp')
, parameter_threshold = c(2, 5, 30)
, threshold_type = c('<', '<', '>'), time_threshold = 2)
wq_par<- threshold_identification(dat_wq, param = c('do_mgl')
, parameter_threshold = c(2)
, threshold_type = c('<'), time_threshold = 2)
## time_threshold and setstep are not necessary for monthly parameters
data("apacpnut")
nut <- apacpnut
dat_nut <- qaqc(nut, qaqc_keep = c(0, 3, 5))
nut_pars <- threshold_identification(dat_nut, param = c('chla_n', 'po4f')
, parameter_threshold = c(10, 0.01)
, threshold_type = c('>', '>'))
nut_par <- threshold_identification(dat_nut, param = c('chla_n')
, parameter_threshold = c(10)
, threshold_type = c('>'))
nut_err <- threshold_identification(dat_nut, param = c('chla_n')
, parameter_threshold = c(30)
, threshold_type = c('>'))