threshold_criteria_plot {SWMPrExtension} | R Documentation |
Water Quality Threshold Plot For Parameters With Criteria
Description
Observed data compared against user-defined water quality thresholds
Usage
threshold_criteria_plot(swmpr_in, ...)
## S3 method for class 'swmpr'
threshold_criteria_plot(
swmpr_in,
param = NULL,
rng = NULL,
thresholds = NULL,
threshold_labs = c("Good", "Fair", "Poor"),
threshold_cols = c("#ABD9E9", "#FFFFCC", "#FEC596"),
crit_threshold = NULL,
log_trans = FALSE,
monthly_smooth = FALSE,
plot_title = FALSE,
...
)
Arguments
swmpr_in |
input swmpr object |
... |
additional arguments passed to other methods. See |
param |
chr string of the variable to plot |
rng |
num, years to include in the plot. This variable can either be one year (e.g., |
thresholds |
numeric vector, numeric criteria that will be plotted in the background |
threshold_labs |
chr vector of labels for categories created by |
threshold_cols |
chr vector of color values for categories created by |
crit_threshold |
num, value at which the critical threshold line should be plotted. Typically the same value used to establish the 'Poor' threshold. |
log_trans |
logical, should y-axis be log? Defaults to |
monthly_smooth |
logical, calculate a monthly average? Defaults to |
plot_title |
logical, should the station name be included as the plot title? Defaults to |
Details
This function visualizes exceedances of numeric criteria which are specified using thresholds
. Suggested numeric criteria for several parameters (dissolved oxygen, dissolved inorganic phosphorus, dissolved inorganic nitrogen, and chlorophyll-a) can be found in the USEPA National Coastal Condition Report (2012).
If the parameter of interest does not have numeric criteria, then threshold_percentile_plot
is recommended.
Value
Returns a ggplot
object
Author(s)
Julie Padilla
References
United States Environmental Protection Agency (USEPA). 2012. "National Coastal Condition Report IV." https://www.epa.gov/national-aquatic-resource-surveys/national-coastal-condition-report-iv-2012
See Also
Examples
data(apacpwq)
dat_wq <- apacpwq
dat_wq <- qaqc(dat_wq, qaqc_keep = c(0, 3, 5))
## Due to the volume of instantaneous data, these plots are a bit slow
x <-
threshold_criteria_plot(dat_wq, param = 'do_mgl'
, rng = 2012
, thresholds = c(2, 5)
, threshold_labs = c('Poor', 'Fair', 'Good')
, monthly_smooth = TRUE
, threshold_cols = c('#FEC596', '#FFFFCC', '#ABD9E9'))
y <-
threshold_criteria_plot(dat_wq, param = 'do_mgl'
, thresholds = c(2, 5)
, threshold_labs = c('Poor', 'Fair', 'Good')
, threshold_cols = c('#FEC596', '#FFFFCC', '#ABD9E9'))
z <-
threshold_criteria_plot(dat_wq, param = 'do_mgl'
, rng = 2012
, thresholds = c(2, 5)
, threshold_labs = c('Poor', 'Fair', 'Good')
, threshold_cols = c('#FEC596', '#FFFFCC', '#ABD9E9')
, monthly_smooth = TRUE)
## A few examples with only two thresholds
x1 <-
threshold_criteria_plot(dat_wq, param = 'do_mgl'
, rng = 2012
, thresholds = c(2, 2)
# A dummy blank ('') value must be added as a threshold label
, threshold_labs = c('Poor', '', 'Good')
, threshold_cols = c('#FEC596', '#FFFFCC', '#ABD9E9')
, monthly_smooth = TRUE)
y1 <-
threshold_criteria_plot(dat_wq, param = 'do_mgl'
, rng = 2012
, thresholds = c(5, 5)
# A dummy blank ('') value must be added as a threshold label
, threshold_labs = c('Poor', '', 'Good')
, threshold_cols = c('#FEC596', '#FEC596', '#ABD9E9')
, monthly_smooth = TRUE)
z1 <-
threshold_criteria_plot(dat_wq, param = 'do_mgl'
, rng = 2012
, thresholds = c(2, 5)
, threshold_labs = c('Poor', 'Good', 'Poor')
, threshold_cols = c('#FEC596', '#ABD9E9', '#FEC596')
, monthly_smooth = TRUE)
data(apacpnut)
dat_nut <- apacpnut
dat_nut <- qaqc(dat_nut, qaqc_keep = c(0, 3, 5))
dat_nut <- rem_reps(dat_nut)
x2 <-
threshold_criteria_plot(dat_nut, param = 'chla_n'
, thresholds = c(2, 5)
, threshold_labs = c('Good', 'Fair', 'Poor'))
y2 <-
threshold_criteria_plot(dat_nut, param = 'chla_n'
, rng = 2012
, thresholds = c(2, 5)
, threshold_labs = c('Good', 'Fair', 'Poor'))
## Nutrient plots are not capable of accidentally displaying any kind of smooth
z2 <-
threshold_criteria_plot(dat_nut, param = 'chla_n'
, rng = 2012
, thresholds = c(2, 5)
, threshold_labs = c('Good', 'Fair', 'Poor')
, monthly_smooth = TRUE)